Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Course: System Analysis & Optimization Semester: 2 Program: M.Tech. Pipeline Engineering Course Code: CHPL7007 Instructions: Attempt ANY FIVE questions

Time: 03 hrs. Max. Marks: 100

S. No.		Marks	СО
Q1	Gaz De France, a French Gas transporting pipeline company utilizes a certain part of the natural gas flowing in the pipeline as an energy source for running the compressor. Researchers found that around 3-4% of the total gas transported through pipeline was consumed in turbine run compressors. This energy consumption was quite large as		
	huge amount of the gas is being transported through pipelines. Researches formulated the problem and found that the fuel consumed in compressor is dependent on the inlet and outlet pressure of the compressors and is obtained from the following relation:		
	$m_f = P_1^2 + P_2^2 + 2P_1 + 4P_2 + 5$		
	Here: $m_{f=}$ Natural Gas consumed in compressor.	20	CO1, CO5
	P_1 = Pressure at inlet of compressor		
	$P_2 = Pressure at outlet of compressor$		
	Using Cauchy's Steepest Descent method and taking starting point as: $X = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, calculate		
	the optimum value of the pressures P_1 and P_2 at which the fuel consumed in compressor gets minimized.		
	Solve up to TWO NUMBER of iterations.		
Q2	A researcher working in a pipeline company wishes to minimize the cost of pipeline networks. On investigation, he found that there are two major components that	20	СО2,

	contribute for the cost of pipeline networks. These are i. Investment Cost of pipe line		
	Network (I) ii. Operating Cost of pipeline network (O). The researcher found that the		
	total cost of pipeline networks is obtained from the following relation:		
	$T.C = 4I^2 - 5IO + 3O^2 - 8I$		
	T.C. = Total Cost of Pipeline Networks.		
	I = Investment Cost of Pipeline Networks.		
	O = Operating cost of pipeline networks		
	With initial starting point as $X = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, probe length as $\theta = 0.01$ and using		
	UNIVARIATE method, minimize the cost of pipeline network. Solve up to TWO NUMBER OF ITERATIONS.		
Q3	Perform TWO ITERATIONS of the FLETCHER REEVES method to minimize		
	the function given as follows:		
	$f(x_1, x_2) = 6x_1^2 - 6x_1x_2 + 2x_2^2 - x_1 - 2x_2$	20	CO2, CO3
	Take starting point as: $X = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.		
Q4	An offshore pipeline transportation problem involves minimizing the cost of pipeline		
	network by finding the optimum route of pipeline. The cost of the pipeline depends on		
	four decision variables, x_1, x_2, x_3 , and x_4 and is obtained from the following co-relation		
	$C = x_1 + 2x_2 + 3x_3 + 4x_4 - 30$		
	The bounds on various decision variables are as follows:	20	CO4
	$1 \prec x_1 \prec 25;$ $3 \prec x_2 \prec 30;$ $4 \prec x_3 \prec 28;$ $5 \prec x_4 \prec 30;$		
	Using Genetic Algorithms, minimize the cost of Gas Pipeline Network. Show,		
	manually the step wise procedure involved up-to one generation only.		

	Assume the number of chromosome as six, crossover rate as 25% and Mutation rate		
	as 10%		
Q5	Use Fibonacci Search to minimize the following function:		
	$f(x) = 0.65 - \left[\frac{0.75}{1+x^2}\right] - 0.65x * \tan^{-1}\left(\frac{1}{x}\right)$ Take the interval as [0,3] and number of experiments to be conducted $n = 6$.	20	CO2, CO4
Q6	Use the two phase simplex method to minimize the following function:		
	Minimize $Z = 5x_1 + 6x_2$		
	$x_1 + x_2 \le 5;$ $3x_1 + x_2 = 10;$ $x_1 + 3x_2 \ge 6;$	20	CO3
	$x_1 \ge 0; x_2 \ge 0;$		