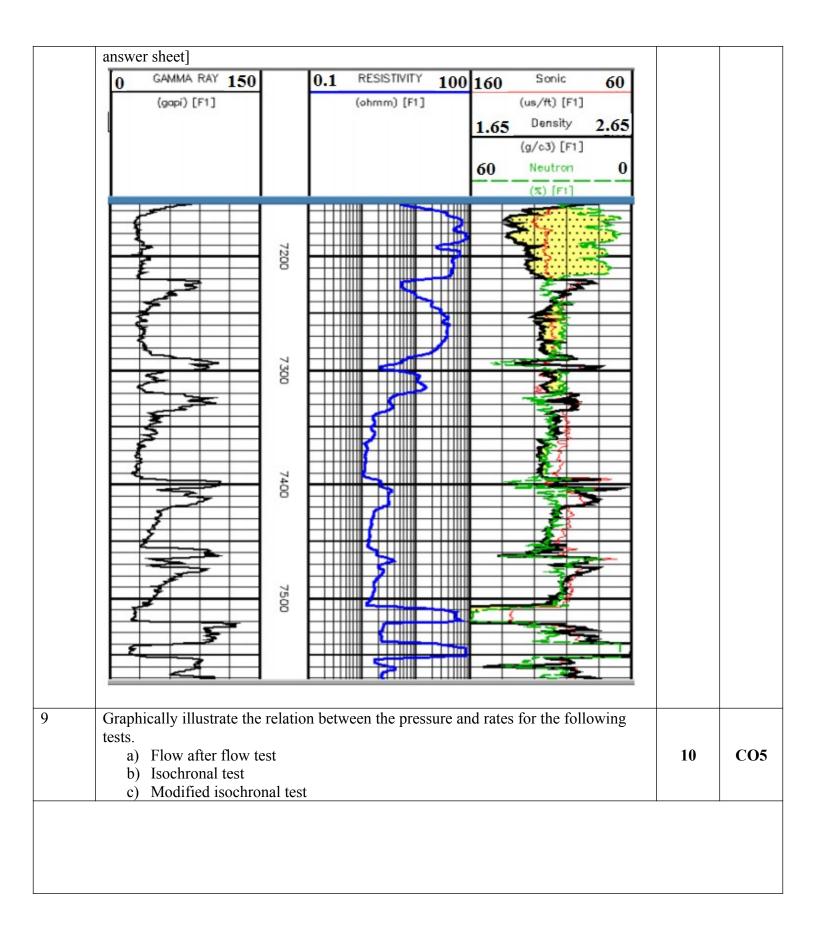
Name:

**Enrolment No:** 



## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019


Course: WELL LOGGING AND WELL TESTING

Semester: VI Program: BTECH APE GAS Course Code: PTEG327

Time 03 hrs. Max. Marks: 100

Instructions: All questions are compulsory. There is no overall choice. However, internal choice has been provided. You have to attempt only one of the alternatives in all such questions.

|        | SECTION A                                                                                                                                                                                                                                              |          |     |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|
| S. No. |                                                                                                                                                                                                                                                        | Marks    | CO  |
| 1      | Explain the actual and ideal Pressure Build Up test with diagram.                                                                                                                                                                                      | 4        | CO5 |
| 2      | Write down the expressions of dimensionless time, distance and pressure for diffusivity equation.                                                                                                                                                      | 4        | CO4 |
| 3      | Discuss the uses of formation density log.                                                                                                                                                                                                             | 4        | CO1 |
| 4      | Ennumerate the important information obtained from PD curves.                                                                                                                                                                                          | 4        | CO5 |
| 5      | Evaluate the porosity of sandstone formation, if the interval transit times of the formation, matrix and fluid are 70 $\mu$ s, 55 $\mu$ s and 190 $\mu$ s respectively.                                                                                | 4        | CO2 |
|        | SECTION B                                                                                                                                                                                                                                              | <u> </u> |     |
| 6      | Develop a mathematical relationship between sand face and surface flow rate for<br>Infinite acting reservoir with wellbore storage with respect for dimensionless time<br>and dimensionless pressure.                                                  | 10       | CO4 |
| 7      | Derive the Diffusivity Equation.                                                                                                                                                                                                                       |          |     |
|        | OR                                                                                                                                                                                                                                                     |          |     |
|        | <ul> <li>Discuss the solution of the diffusivity equation for the following conditions</li> <li>a) Bounded Cylindrical Reservoir</li> <li>b) Infinite cylindrical reservoir with line source</li> <li>c) Pseudo steady state solution</li> </ul>       | 10       | CO4 |
| 8      | From the given well log data identify lithology. Evaluate shale volume, porosity, water saturation and hydrocarbon saturation at a depth 7200 ft. (Given Resistivity of formation water is 0.1 ohm m) [Attach the interpreted well logs along with the | 10       | CO3 |



|                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                          | SECTION-C                           |                                                                                                                |    |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------|----|----|
| <ul> <li>Following completion, a well is produced for a short time and then shut in for a buildup test. The production history and reservoir and fluid properties are given below.</li> <li>a) Calculate pseudo producing time.</li> <li>b) Calculate the drawdown by Superposition Principle.</li> <li>c) Calculate the drawdown by Horner's Approximation and justify its application.</li> <li>d) Compare the above results.</li> </ul> |                                                                                                                                                          |                                     |                                                                                                                |    |    |
| $P_i =$<br>B=1.32<br>h=43ft<br>$C_t$<br>Ø=0.16                                                                                                                                                                                                                                                                                                                                                                                             | Production<br>time(hours)<br>25<br>12<br>26<br>72                                                                                                        | Total production<br>(STB)5204668    | 2500Psi<br>RB/STB<br>$\mu$ =0.44cp<br>k=25md<br>=18x10 <sup>-6</sup> psi-1                                     | 20 | СО |
| producing of<br>the well per<br>$\mu = 0.62$<br>Ct = 1.0<br>Pi = 3.2<br>B0 = 1.<br>h = 158<br>$\phi = 0.22$<br>Calculate t                                                                                                                                                                                                                                                                                                                 | only oil; it is product<br>rformance are<br>2 cp, $k = 16$ mD<br>0 x 10-5 psi-I<br>200 psia, J = 0.5r ST<br>475 RB/STB,<br>3 ft<br>3 the distance of shu | ing at the constant rate<br>B/psi-D | eristics: The flowing well is<br>of 200 STB/D. Data describing<br>owing well when shut-in was<br>od of 8 days. |    |    |
| <br>buildup test                                                                                                                                                                                                                                                                                                                                                                                                                           | t, during which the d                                                                                                                                    | lata in following were              | was shut in for a pressure<br>recorded. For this well, net<br>, is 1.3 RB/STB; porosity is                     | 20 | CC |

| 0.2; total compressibil  | ity, total compressib  | ility is 20x 10-6 Psi <sup>-</sup> | <sup>-1</sup> ; oil viscosity is |  |
|--------------------------|------------------------|------------------------------------|----------------------------------|--|
| 1.0cp; and well bore ra  | adius is 0.3ft. From t | hese data, estimate f              | formation                        |  |
| permeability, initial re | servoir pressure and   | skin factor.                       |                                  |  |
|                          | Time after Shut        | $P_{WS}(Psi)$                      |                                  |  |
|                          | in (hours)             |                                    |                                  |  |
|                          | 0                      | 1150                               |                                  |  |
|                          | 2                      | 1794                               |                                  |  |
|                          | 4                      | 1823                               |                                  |  |
|                          | 8                      | 1850                               |                                  |  |
|                          | 16                     | 1876                               |                                  |  |
|                          | 24                     | 1890                               |                                  |  |
|                          | 48                     | 1910                               |                                  |  |
|                          |                        |                                    | 1                                |  |
|                          |                        |                                    |                                  |  |

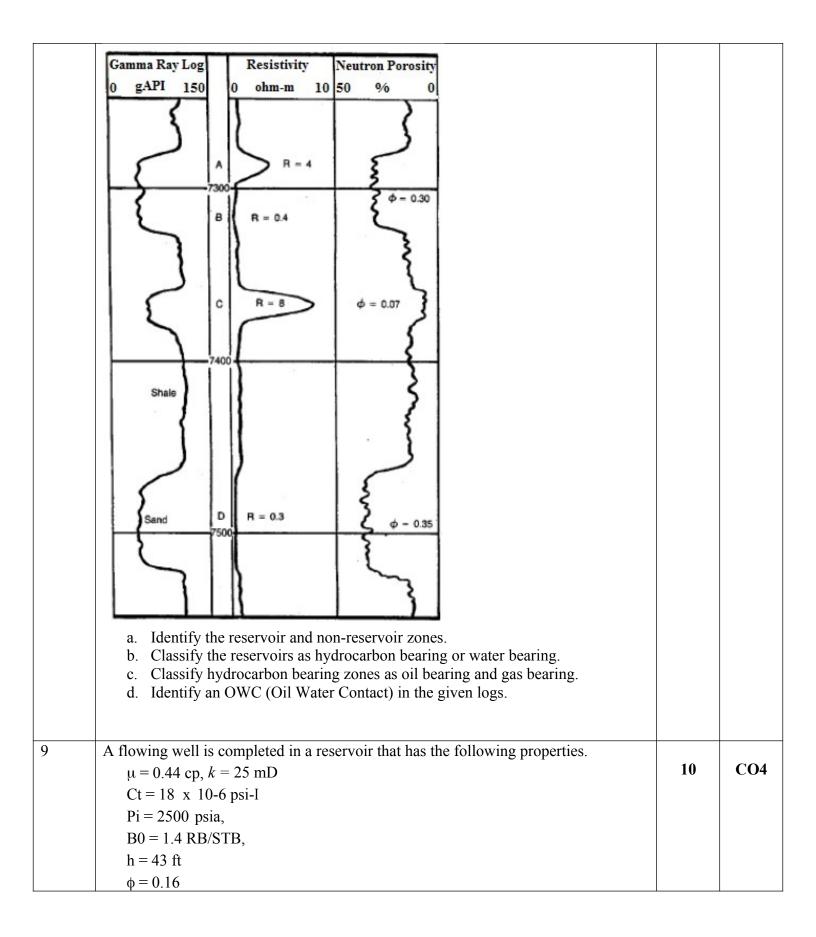
Name:

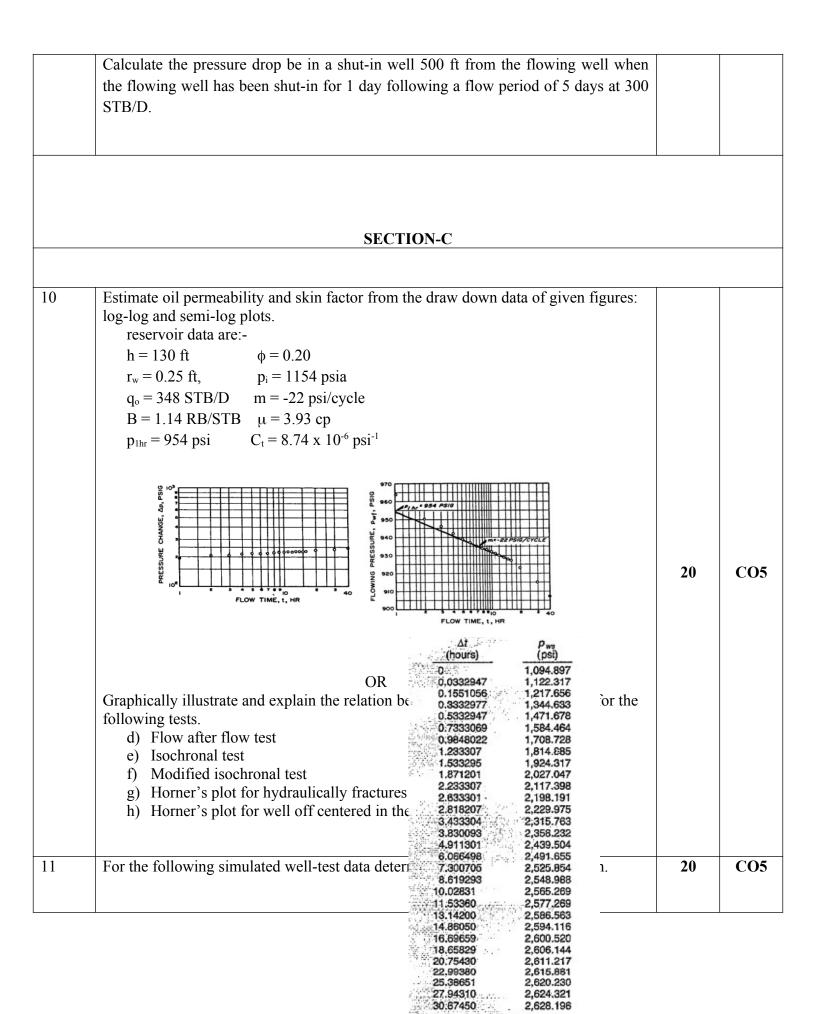
**Enrolment No:** 



## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Course: WELL LOGGING AND WELL TESTING


Semester: VI Program: BTECH APE GAS Course Code: PTEG327


Time 03 hrs. Max. Marks: 100

Instructions: All questions are compulsory. There is no overall choice. However, internal choice has been provided. You have to attempt only one of the alternatives in all such questions.

|        | SECTION A                                                                                                                                                                                                                           |       |     |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| S. No. |                                                                                                                                                                                                                                     | Marks | CO  |
| 1      | Discuss the conditions under which Horner's Approximation is applicable.                                                                                                                                                            | 4     | CO4 |
| 2      | Write down the expressions of dimensionless time, distance and pressure for diffusivity equation.                                                                                                                                   | 4     | CO4 |
| 3      | <ul> <li>Explain the following processes</li> <li>a) Neutron emission</li> <li>b) Neutron scattering</li> <li>c) Neutron Emission</li> </ul>                                                                                        | 4     | CO1 |
| 4      | Discuss the uses of SP log.                                                                                                                                                                                                         | 4     | CO1 |
| 5      | Evaluate the porosity of sandstone formation, if the interval transit times of the formation, matrix and fluid are 95 $\mu$ s, 35 $\mu$ s and 170 $\mu$ s respectively.                                                             | 4     | C02 |
|        | SECTION B                                                                                                                                                                                                                           |       |     |
| 6      | "According to superposition principle, the total flow rate at any point in the reservoir<br>is the sum of flow rates at that point caused by flow in each of the wells in the<br>reservoir." Justify this statement mathematically. | 10    | CO4 |
| 7      | Derive the solution for the Diffusivity Equation for infinite acting reservoir with line                                                                                                                                            | 10    | CO4 |

|   | source well for overbalanced well.                                                                                                                                                                                                                                                                                                                                                                |                     |     |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----|
|   | OR                                                                                                                                                                                                                                                                                                                                                                                                |                     |     |
|   | A pressure build-up test analysis for a well with $q = 83$ STB/D, $B = 1.12$ RB/STB, $\mu = 3.15$ cp, $h = 12$ ft, $r_w = 0.265$ ft, and $p_{avg}$ . $p_{wf} = 265$ psia gave $k = 155$ mD and $s = 2.2$ . Find the pressure drop across the skin, the flow efficiency, the damage ratio, the damage factor, and the apparent wellbore radius.                                                    |                     |     |
| 8 | Wireline logging was performed on April 2018 in Well No 15/9-FC in XYZ oil field<br>to identify new hydrocarbon bearing zones. The Gamma ray log was recorded to<br>identify the lithology, resistivity log was acquired to identify the fluid type in the<br>reservoir zone and to determine the porosity neutron log was acquired which is<br>sensitive to the hydrogen index of the formation. | 10<br>(3+3+3<br>+1) | CO3 |





| k = 48 mD<br>$\phi$ = 0.20<br>r <sub>w</sub> = 0.25 ft,<br>c = 500 STP/D | $t_p = 150 \text{ hrs}$<br>$p_i = 1154 \text{ psia}$ |  |  |
|--------------------------------------------------------------------------|------------------------------------------------------|--|--|
|                                                                          |                                                      |  |  |
|                                                                          |                                                      |  |  |
|                                                                          |                                                      |  |  |