Name: Enrolm	ent No:		
Progra Course	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Set – 1 End Semester Examination, May 2019 Programme Name: B. Tech. APE Gas Course Name : Process Dynamics Instrumentation and Control Course Code : GNEG 389 Max. Marks : 100		hrs
Nos. of	Prode : GNEG 389 Max. Page(s) : 4 etions: Assume the appropriate value of missing data if any.	Marks : 100)
<u>insti uc</u>	SECTION A		
S. No.		Marks	CO
Q 1	H(t) Write down the steps of developing a mathematical model of any physical process. There are three different tanks (1, 2, 3) of three different cross-sectional area (A1>A2>A3). There are three dynamic response of these three tank for unit step change in flow rate is shown in the given figure. Map the response (a, b) of with the three tanks (1, 2, 3)?	ie 5 ts	CO1
Q 2	Write the transfer functions of proportional, proportional integral, and proportional integral derivative controllers. $R \longrightarrow G_{c} \longrightarrow 1 \xrightarrow{\tau_{s}+1} c$ Draw the responses of a servo problem for the control system with each or these three controllers.	5	CO5
Q 3	Write the different elements of a typical instrument. Draw it for a thermometer.	5	CO6
Q 4	What is fail-safe condition for a control valve? Draw a schematic of a fail-sate pneumatic control valve which is used to control fuel supply for heating a tank.	če 5	CO2
Q 5	SECTION B (Q 5 has internal option)If G _c is K _c , (proportional controller) in the control system given in below figure, then find out the offset for servo problem with unit step change.	10	CO2

Q 6 Q 7	OR If $G_C = K_C(1+1/\mathcal{T}_I s)$ then prove there will be no offset for the servo problem. If the input is $5Sin(10t)$ and $K_C = 0.05$ in the system shown in problem 5 then find the amplitude ratio and phase lag in the output signal. If G_C is K_C (proportional controller) in the system given in problem 5, then prove that system is unstable at $K_C = 18.$ (6)	10	CO3
	Figure Root locus diagram for third-order system. If root locus is given in below figure, then to explain it draw the responses for different values of Kc for the step change in servo problem. (4) If root locus is given in below figure, then to explain it draw the responses for different values of Kc for the step change in servo problem. (4)	10	CO3
Q 8	What is hysteresis and which static property it affects? (2) How do you make the instrument reading when you know static error and true value? (2) What is the span of a measuring instrument? (2) What is least accuracy and root squire accuracy? (2) What is measuring lag and which dynamic characteristic it affects? (2)	10	CO6
	SECTION-C Q- 10 has internal choice		

Q 9	For the reactor (CSTR) shown in figure determine the transfer function that relates		
	the exit concentration from the reactor to changes in the feed concentration. The		
	reaction rate law is $-r_A = k_C \times C_A^2$, where r_A is the production rate of C_A in moles per		
	liter per minute. The rate constant is 2 (1/(mol/L-min)). The maximum variation		
	allowed in exit stream is 5% of the steady state value. Suppose that as an operator		
	you found that the feed concentration is suddenly tripled from 1 to 3 mol/L then how		
	much maximum time you have to take a corrective measure by taking it back to 1		
	mol/L? Suppose that you took double that time in taking the correcting measure, then		
	how many L of exit stream will be wasted?	20	CO1
	5 L/min $C_{A0} = 1 \text{ mol/L}$ Reaction : $2A \longrightarrow B$ Rate law : $-r_A = kC_A^2$		
	5 L/min		
	$C_{A0} = 0.2 \text{ mol/L}$		
010	Volume = 50 L		
Q10	Design the P, PI and PID controller using Ziegler-Nichols tuning technique for a first		
	order followed by a pipe of dead time of 2 (time units) with the transfer function		
	$\begin{bmatrix} 2 \\ -1 \end{bmatrix} \begin{bmatrix} -2s \end{bmatrix}$		
	$G_{P} = \left\lfloor \frac{2}{0.5s+1} \right\rfloor \left[e^{-2s} \right]$ and the transfer function of measuring element $H = \left\lfloor \frac{1}{2s+1} \right\rfloor$	20	CO4
	and final control element is 1. Get amplitude ratio and phase angle for the process.		
	Show the bode plot on plane paper qualitatively. Find the crossover frequency and		
	gain margin with .		
	OR		
	Suppose you have gone to visit an industry as a consultant. There is a reactor	20	CO4
	operating at designed optimal pressure. The pressure is controlled using P controller.		
	What is the easiest suggestion you will give to the operator at control panel? What		
	will be its benefit and what will be its repercussions? If you get a liberty to change		
	the controller itself which controller you will choose and what will be your logic? If		
	you have also to tune the controller parameters, then what will be the simple criteria		
	you will look for? How will you find out one single criterion? What variations in		

formulation of the above criterion will you make so that following cases can be	
handled: (i) the error is significant (ii) the error is very small and (iii) the error is	
persistent for a significant time	

Name: Enrolm	ent No:	UPES		
		MAND ENEDOVOTU	DIEC	
	UNIVERSITY OF PETROLEU Set 2 End Semester Exa		DIES	
Progra	amme Name: B. Tech. APE Gas	Seme	ester : V	I
Course	e Name : Process Dynamics Instrumentation a			
Course	e Code : GNEG 389 Spage(s) : 4	Max.	Marks : 100)
	ctions: Assume the appropriate value of missing c	lata if any.		
	SECTIO	*		
S. No.			Marks	CO
Q 1	What is the transfer function of transportation lag.	If there is a gas flowing in the		
	pipe of length 10 m with flow rate 2 m^3/s , what wi	ill be the transfer function?	5	CO1
Q 2	Plot the graph of (P vs ε) for proportional controlle	er? Tell the limitation of the ideal		
ζ-	curve against the real one. How does it effect by in			CO2
	which condition it is converted into ON/OFF cont		5 in	
	ON/OFF controller?	fonor. Why is doud build crouted		
Q 3	Write down names of 3 measuring instruments for	following measuring variable:		COC
	1) Temperature 2) Flow 3) Pressure 4) Level	5) Composition.	5	CO6
Q 4	Pneumatic control valves are to be specified for	the applications listed below. Sta	te	
	whether an air to open or air to close valve sho	ould be specified for the following	g	
	manipulated variables:			CO6
	(a) Steam pressure in a reactor heating coil.		5	
	(b) Flow rate of reactants into a polymerization rea	actor.		
	(c) Flow of effluent from a wastewater treatment h	nolding		
	tank into a river.			
	(d) Flow of cooling water to a distillation condens			
	SECTION B (Q 5 has	s internal option)		
Q 5	If G_C is K_C , (proportional controller) in the control	l system given in below figure,	10	CO2
	then find out the offset for servo problem with uni	it step change.		

	OR		
	If $G_C = K_C(1+1/\tau_1 s)$ then prove there will be no offset for the servo problem.		
Q 6	In the system sizes in		
	In the system given in		
	problem 6, if 4- Kp: 60 Pole: 0 + 3.3166i		
	$H(s) = \frac{1}{0.1 s + 1}$, then find $\frac{3}{2}$		CO3
	out whether the system is $pole 3$ $pole 3$ $pole 2$ $(K_P=0)$ $($		
	stable or not. (6) $\underbrace{\widehat{\mathbb{E}}}_{\mathbb{E}}^{0} \xrightarrow{K_{P}>0} \underbrace{(K_{P}=0)}_{\mathbb{E}} \underbrace{(K_{P}$	10	
	The root locus of a control -1 $K_P = 6$		
	system is given in below		
	figure, then draw the _4		
	responses for different -5 -5 -6 -5 -4 -3 -2 -1 0 -1		
	values of K_C for the step $Re(s)$		
	change in servo problem to explain the root locus. (4)		
Q 7		10	CO4
	Find out open lopp transfer function. Find out phase crossover frequency and gain	10	04
	crossover frequency. Find out the gain margin and phase margin and check the		
	stability. Find out what should have been the value of K_c to make the gain margin		
	1.7.		
Q 8	What is hysteresis and which static property it affects? (2) How do you make the		
	instrument reading when you know static error and true value? (2) What is the span	10	CO6
	of a measuring instrument? (2) What is least accuracy and root squire accuracy? (2)	10	
	What is measuring lag and which dynamic characteristic it affects? (2)		

	$Q = (-\Delta H_R)(-r_A)V$ is being generated by reaction $-r_A = kC_A$ and by external		
	heating. The operating conditions are as follows:		
	$\rho = 1000 kg/m^3; q = 1.667 \times 10^{-3}; m^3/s; T_i = 350 K; T = 500 K;$		
	$V = 0.1m^3$; $Cp = 0.239 \frac{kJ}{kg - K}$; $C_{A,i} = 1 \frac{kmol}{m^3}$; $C_A = 0.5 \frac{kmol}{m^3}$;		
	$k = 1.66 \times 10^{-11} s^{-1}; -\Delta H_R = 5 \times 10^4 kJ/kmol$		
	Calculate the required external heating/cooling rate required for the given condition using the developed model at steady state.		
	If you have to design the control system such that it can take action for any disturbance in inlet temperature in Δt sec. The system is such that it can handle maximum disturbance of 10 K inside the reactor, whereas the usual disturbance in inlet temperature is 50 K.		
	Pure A q, c_{Ai}, T_i V, ρ, T V, ρ, T Q $Cooling medium at temperature T_c$		
Q10	Suppose you have gone to visit an industry as a consultant. There is a reactor	20	CO5
	operating at designed optimal pressure. The pressure is controlled using P controller. The operator asks you what will happen if he increases the value of K_c . What will be		

your answer?	
He also informed you that he tried once by increasing it but after certain value nothing was changing. What will be your logic?	
Then he told that another engineer had tried to put a PI controller but the system was becoming unstable because wrong value of reset rate? What will be your suggestion?	
If you have to suggest him to use PID controller what will be your major concern about the nature of inlet conditions to the system?	
Now suppose you have to fine tune the controller parameters, then what will be the simple criteria you will look for? How will you find out one single criterion? What variations in formulation of the above criterion will you make so that following cases	
can be handled: (i) the error is significant (ii) the error is very small and (iii) the error is persistent for a significant time	