Name:						- UD	ГС		
Enrolm	ment No:								
	UN	IVERS	ITY OF PE	TROLE	UM AND	ENERC	GY STUD	IES	
					mination, I				
Course Course	gramme Name:B. Tech. ADESemesterrse Name:Applied Numerical TechniquesTimerse Code:MATH 305Max. N						er : VI : 03 hrs Iarks : 100		
Instruct	tions: Attemp arrying 8 ma	ot all questi	ions from Section			· · ·	-		
					ION A				
			(Attempt a	ll questions)				~~~
S. No.								Marks	CO
Q 1	$\frac{d^2 y}{dx^2} - y =$ with the b	$x^4, 0 \le x \le$	ing boundary va 1, onditions $y(0) =$ proximate solution	0 and $y(1)$	=0. Choose t			5	CO6
Q 2	Use two a	Use two approximations of Picard's method to obtain y for x=0.2. Given: $\frac{dy}{dx} = x - y \text{ with } y(0) = 1.$					5	C05	
Q 3	By considering three terms of Taylor's series, evaluate $y(1.1)$ from the following differential equation: $\frac{dy}{dx} = x + y \text{ with } y(1) = 0.$					5	CO5		
Q 4	Evaluate	$I = \pi \int_0^1 y^2 d$	lx using Simpson		_		_	5	CO2
	<i>x</i> :	0	0.25	0.5	0.75	1	-	_	
	y:	1	0.9896	0.9589	0.9089	0.8415			
		(05.0	Q6, Q7 are com			ve internal	choices)		
Q 5	Given that Find y for	t:		$g_{10}(x+y)$ wi	th $y(0)=1$			8	C05

Q 6	Using Lagrange's interpolation, evaluate $\left[\frac{df}{dx}\right]_{at x=4}$ from the following data: x: 0 2 5 1 f(x) 0 8 125 1	8	CO2
Q 7	Solve the equation $\frac{dy}{dx} = x + y$ with initial condition $y(0) = 1$ by Runge-Kutta method of order four, from $x = 0$ to $x = 0.2$ with step length $h = 0.1$.	8	CO5
Q8	Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ in $0 < x < 5$, $t \ge 0$ given that $u(x, 0) = 20$, $u(0, t) = 0$, $u(5, t) = 100$. Compute u for one time step with $h = 1$ by Crank-Nicolson method. OR Using Taylor's series, find the solution of the differential equation $x \frac{dy}{dx} = x - y$ with $y(2) = 2$ at $x = 2.1$ correct to five decimal places.	8	C05
Q9	Find the positive root of $x^4 - x = 10$ correct to three decimal places using Newton-Raphson method. OR The graph of $y=2\sin x$ and $y=\log x+c$ touch each other in the neighborhood of point $x=8$. Find c and the coordinates of point of contact.	8	CO3
	SECTION-C (Q 10A, Q10B are compulsory and Q11A and Q11B have internal choices)	`	
Q 10 A		10	C05
Q10B	Consider the following boundary value problem (BVP) $\frac{d^2u}{dx^2} - u = x, 0 \le x \le 1$ with $u(0) = 0, u(1) = 0$. Find an approximate solution $\dot{u}(x) = a_1 \phi_1(x) + a_2 \phi_2(x)$ by Galerkin's method. Consider the basis functions $\phi_1(x) = x(x-1)$ and $\phi_2(x) = x^2(x-1)$.	10	CO6
Q11A	Given that : $\sqrt{12500} = 111.803399$, $\sqrt{12510} = 111.848111$, $\sqrt{12520} = 111.892806$ $\sqrt{12530} = 111.937483$. Using Gauss's Backward formula, evaluate $\sqrt{12516}$.	10	CO1

	OR By means of Newton's divided difference formula, find the values of $f(8)$ and $f(15)$ from the following table:								
	f(x)	4	5	7 294	10 900	11 1210	13 2028		
Q11B	Solve equations $27x+6y-z=85$; $x+y+54z=110$; $6x+15y+2z=72$ using Gauss-Seidel method. Use only four iterations.							10	
	OR Apply Doolittle method of LU decomposition to solve the equations: 3x+2y+7z=4; $2x+3y+z=5$; $3x+4y+z=7$							10	CO4

Name:						
Enrolm						
	UNIVERSITY OF PETROLEUM AND ENERGY STU	DIES				
	End Semester Examination, May 2019					
	mme Name: B. Tech. ADE Semes					
	e Name : Applied Numerical Techniques Time	: 03				
	e Code : MATH 305 Max. Spage(s) : 03	Marks : 10 (U			
Instruct	ions: Attempt all questions from Section A (each carrying 5 marks); attempt all question arrying 8 marks); attempt the question from Section C (each carrying 20 marks). Scien					
	SECTION A					
	(Attempt all questions)					
S. No.		Marks	CO			
Q 1	The Poisson equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -1$ defined in the domain D where	e 5	CO6			
	$D = [(x, y), -1 \le x, y \le 1] \text{ with } u = 0 \text{ on } x = \pm 1 \text{ and } y = \pm 1. \text{ Using the trial function} \\ \phi(x) = (1 - x^2)(1 - y^2) \text{ for an approximate solution } \dot{u} = a \phi(x). \text{ Hence find the residual.}$	1	COU			
Q 2	Use single approximations of Picard's method to obtain y for $x=0.1$. Given:					
	$\frac{dy}{dx} = 3x + y^2 \text{ with } y(0) = 1.$	5	C05			
Q 3	Given $\frac{dy}{dx} = \frac{y-x}{y+x}$ with $y(0) = 1$. Find y approximately for $x = 0.04$ taking step size	5	C05			
	h=0.02 by Euler's method.					
Q 4	Evaluate $I = \int_{0}^{1} \frac{1}{1+x^2} dx$ using Simpson's one third rule taking $h = \frac{1}{4}$.	5	CO2			
	SECTION B					
	(Q5, Q6, Q7 are compulsory and Q8, Q9 have internal choices)					
Q 5	Find $y(1)$ for $\frac{dy}{dx} = 2y + 3e^x$ with $y(0) = 0$ using Taylor's series method up to fifth	8	CO5			
0.(derivative. Compare it with the exact solution.	_				
Q 6	Using Newton forward interpolation, find $\frac{dy}{dx}$ at x=0.1 from the following table:		~			
	x: 0.1 0.2 0.3 0.4	8	CO2			
	y: 0.9975 0.9900 0.9776 0.9604	1				
	Using Milne's method, solve $\frac{dy}{dx} = \frac{1}{2}(x+y)$ with $y(0)=2$, $y(0.5)=2.636$; $y(1)=3.595$					

	y(1.5)=4.968, find $y(2)$.		
Q8	Using Euler's modified method, obtain $y(0.2)$ from the following differential equation $\frac{dy}{dx} = x + \sqrt{y} $ with initial condition $y(0) = 1$. (take $h = 0.2$ i		
	OR Using Runge-Kutta method of fourth order, solve for y at x=1.2 from $\frac{dy}{dx} = \frac{2 xy + e^x}{x^2 + x e^x}$ given y(1)=0 (take h=0.2).	8	CO5
Q9	Consider the graph of $\cos x$ for the non-negative values of $x \in R$ (set of real numbers). The oblique line $y=x$ cuts this graph of at the point $P(x, y)$.Use bisection method to obtain the abscissa of point <i>P</i> correct to 3 decimal places.	8	<u> </u>
	OR Compute root of the equation $x^2e^{-x/2}=1$ in the interval [0,2] using secant method. The root should be correct to three decimal places.	8	CO3
	SECTION-C (Q 10A, Q10B are compulsory and Q11A and Q11B have internal choices))	
Q 10 A	Using Crank- Nicolson method, solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ in $0 < x < 5$, $t \ge 0$ given that $u(x,0)=20$, $u(0,t)=0$, $u(5,t)=100$. Compute u for one time step with $h=1$.	10	C05
Q10B	Using two parameters, solve the following boundary value problem by Galerkin's method. $\frac{d^2u}{dx^2} + u = 1 + x^2; u(0) = u(1) = 0$	10	CO6
Q11A	If $f(x)$ is a polynomial of degree four and given that:		
	$f(4)=270, f(5)=648, \Delta f(5)=682, \Delta^3 f(4)=132$		
	Find $f(6)$ and $f(7)$ and hence find the value of $f(5.8)$ using Gauss's backward formula.		
	OR	10	CO1
	A curve $y=f(x)$ passes through the points $(0,18),(1,10),(3,-18)$ and $(6,90)$. Find the slope of the curve at $x=2$ by using Newton's divided difference interpolation formula.		

Q11B	Solve the equations x+y+z=3; $x-y+z=4$; $x+y-z=5by Choleski decomposition method.$		
	OR	10	CO4
	Solve the following system of equations by Gauss-Seidel method correct to three decimal places: 27x+6y-z=85; $x+y+54z=110$; $6x+15y+2z=72$		