Name:	
Enrolment No:	15 UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Programme Name:

B. Tech. ADE
: Applied Numerical Techniques
$\begin{array}{ll}\text { Course Name } \\ \text { Course Code } & \text { MATH } 305\end{array}$
Nos. of page(s) : 03
Instructions: Attempt all questions from Section A (each carrying 5 marks); attempt all questions from Section B (each carrying 8 marks); attempt the question from Section C (each carrying 20 marks). Scientific calculator is allowed.

SECTION A(Attempt all questions)							
S. No.						Marks	CO
Q 1	Consider the following boundary value problem (BVP). $\frac{d^{2} y}{d x^{2}}-y=x^{4}, 0 \leq x \leq 1,$ with the boundary conditions $y(0)=0$ and $y(1)=0$. Choose two basis functions $\phi_{1}(x)$ and $\phi_{2}(x)$ for an approximate solution $\dot{y}=a_{1} \phi_{1}(x)+a_{2} \phi_{2}(x)$. Hence find the residual.					5	CO6
Q 2	Use two approximations of Picard's method to obtain y for $x=0.2$. Given:$\frac{d y}{d x}=x-y \text { with } y(0)=1$					5	$\mathrm{CO5}$
Q 3	By considering three terms of Taylor's series, evaluate $y(1.1)$ from the following differential equation:$\frac{d y}{d x}=x+y \text { with } y(1)=0 .$					5	$\mathrm{CO5}$
Q 4	Evaluate $I=\pi \int_{0}^{1} y^{2} d x$ using Simpson's rule:					5	CO2
SECTION B(Q5, Q6, Q7 are compulsory and Q8, Q9 have internal choices)							
Q 5	Given that: $\frac{d y}{d x}=\log _{10}(x+y) \text { with } y(0)=1$ Find y for $x=0.2$ using Euler's modified method correct upto four decimal places (take $h=0.2$ i .					8	$\mathrm{CO5}$

Name:	
Enrolment No:	15 UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Programme Name:
B. Tech. ADE
Course Name : Applied Numerical Techniques
Course Code : MATH 305
Nos. of page(s) : 03

Semester : VI
Time : 03 hrs
Max. Marks : 100

Instructions: Attempt all questions from Section A (each carrying 5 marks); attempt all questions from Section B (each carrying 8 marks); attempt the question from Section C (each carrying 20 marks). Scientific calculator is allowed.

SECTION A
(Attempt all questions)

S. No.		Marks	CO
Q 1	The Poisson equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=-1 \quad$ defined in the domain D where $D=\{(x, y),-1 \leq x, y \leq 1\}$ with $u=0$ on $x= \pm 1$ and $y= \pm 1$. Using the trial function $\phi(x)=\left(1-x^{2}\right)\left(1-y^{2}\right)$ for an approximate solution $\dot{u}=a \phi(x)$. Hence find the residual.	5	CO6
Q 2	Use single approximations of Picard's method to obtain y for $x=0.1$. Given: $\frac{d y}{d x}=3 x+y^{2} \text { with } y(0)=1 .$	5	CO5
Q 3	Given $\frac{d y}{d x}=\frac{y-x}{y+x}$ with $y(0)=1$. Find y approximately for $x=0.04$ taking step size $h=0.02$ by Euler's method.	5	CO5
Q 4	Evaluate $I=\int_{0}^{1} \frac{1}{1+x^{2}} d x$ using Simpson's one third rule taking $h=\frac{1}{4}$.	5	CO2

SECTION B
(Q5, Q6, Q7 are compulsory and Q8, Q9 have internal choices)

Q 5	Find $y(1)$ for $\frac{d y}{d x}=2 y+3 e^{x}$ with $y(0)=0$ using Taylor's series method up to fifth derivative. Compare it with the exact solution.					8	$\mathrm{CO5}$
Q 6	Using Newton forward interpolation, find $\frac{d y}{d x}$ at $x=0.1$ from the following table:					8	CO2
	x :	0.1	0.2	0.3	0.4		
	y :	0.9975	0.9900	0.9776	0.9604		
Q 7	Using Milne's method, solve $\frac{d y}{d x}=\frac{1}{2}(x+y)$ with $y(0)=2, y(0.5)=2.636 ; y(1)=3.595$;					8	CO5

	$y(1.5)=4.968$, find $y(2)$.		
Q8	Using Euler's modified method, obtain $y(0.2)$ from the following differential equation $\frac{d y}{d x}=x+\|\sqrt{y}\|$ with initial condition $y(0)=1$. (take $h=0.2 i$ OR Using Runge-Kutta method of fourth order, solve for y at $x=1.2$ from $\frac{d y}{d x}=\frac{2 x y+e^{x}}{x^{2}+x e^{x}}$ given $y(1)=0$ (take $h=0.2$).	8	CO5
Q9	Consider the graph of $\cos x$ for the non-negative values of $x \in R$ (set of real numbers). The oblique line $y=x$ cuts this graph of at the point $P(x, y)$. Use bisection method to obtain the abscissa of point P correct to 3 decimal places. OR Compute root of the equation $x^{2} e^{-x / 2}=1$ in the interval $[0,2]$ using secant method. The root should be correct to three decimal places.	8	CO 3
SECTION-C(Q 10A, Q10B are compulsory and Q11A and Q11B have internal choices)			
Q 10 A	Using Crank- Nicolson method, solve $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ in $0<x<5, t \geq 0$ given that $u(x, 0)=20, u(0, t)=0, u(5, t)=100$. Compute u for one time step with $h=1$.	10	CO5
Q10B	Using two parameters, solve the following boundary value problem by Galerkin's method. $\frac{d^{2} u}{d x^{2}}+u=1+x^{2} ; u(0)=u(1)=0$	10	CO6
Q11A	If $f(x)$ is a polynomial of degree four and given that: $f(4)=270, f(5)=648, \Delta f(5)=682, \Delta^{3} f(4)=132$ Find $f(6)$ and $f(7)$ and hence find the value of $f(5.8)$ using Gauss's backward formula. OR A curve $y=f(x)$ passes through the points $(0,18),(1,10),(3,-18)$ and $(6,90)$. Find the slope of the curve at $x=2$ by using Newton's divided difference interpolation formula.	10	CO1

Q11B	Solve the equations $x+y+z=3 ; x-y+z=4 ; x+y-z=5$ by Choleski decomposition method. OR Solve the following system of equations by Gauss-Seidel method correct to three decimal places: $27 x+6 y-z=85 ; x+y+54 z=110 ; 6 x+15 y+2 z=72$	10	CO4

