Name: Enrolment No:					
	μι 1 10 .	UNIVERSITY WITH A PURPOSE	UNIVERSITY WITH A PURPOSE		
		UNIVERSITY OF PETROLEUM AND ENERGY STUDIES			
		End Semester Examination, May 2019			
Course:	8				
Program		0 0	Time 03 hrs.		
		CEEG 3007 Max. Mar	ks: 100		
Total Pa	0				
Instruct		Answer all questions of Section A, B & C	0.44.2	• ~	
(Assum		he necessary data if necessary) (Internal Choice is there in Q 6-SectionB and			
		Note: IS 800:2007 and IS 808:1989 should be Allowed/Provided		•	
		SECTION A			
S. No.			Marks	CO	
	ii.	 following patterns will yield highest efficiency? a. Chain b. Staggered c. Diamond d. Staggered diamond Slip critical connection are designed on the basis of a. Friction of bolts 			
	iii.	 b. Friction between plates c. Compression d. Shear If the diameter of a bolt is 20mm then the maximum number of bolt(s) that 			
		can be accommodated in one row in 140mm wide flat is (are) a. 2 b. 3 c. 4 d. 1	4	CO1	
	iv.	When the load line coincides with the c.g. of the bolt group, then the bolts are subjected to a. Only shear			

	b. Only tensionc. Only bendingd. Both shear and tension				
Q 2	Match the lists given in two tables		4	CO1	
	A-Structural members subjected to	1-Slot Weld			
	direct tension or compression	2-Plug Weld			
	B-Joining two surfaces approximately	3-Fillet Weld			

	at right angles to each other4- Butt WeldC-A hole is made in one of the		
	components and welding is done around		
	the periphery of the hole		
	D-Welding rod inside of a pipe		
Q 3	i. Under what circumstances will block shear failure dominate?		CO 2
	ii. Why are unequal angles with long legs connected more efficient for tension members?	2+2=4	CO2
Q 4	i. Compression members are more critical than tension members. Comment!	2+2=4	
	ii. Why four different buckling curves are prescribed to evaluate column strength?		CO2
Q 5	i. Differentiate between buckling and bending of a beam.	2+2=4	CO3
	ii. What is the importance of purlin in a steel truss?		CO4
	SECTION B		
Q 6	For a column section built up of shape shown in figure, determine the axial load capacity in compression for the data $L = 6m$, End conditions: Both end restrained in direction and position, $\gamma_{mf} = 1.5$	10	CO2
	$\begin{array}{c} \underline{OR} \\ \hline \\ Determine the effective length factor for the column C2C3 of an unbraced frame shown in figure with C= 0.6 \\ \hline \\ Columns 1/L= 1.2 g units \\ \hline \\ Beams B_1, 1/L= 1.4 g units \\ \hline \\ B_2, 1/L = g units \end{array}$		

	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Q 7	Compute the tensile strength of an angle section ISA 150 x 75 x 10 connected with the gusset plate as shown.	10	CO2
Q 8	An ISLC 300 @ 324.7 N/m is to carry a factored tensile force of 900 kN. The channel section is to be welded at the site to a gusset plate 10 mm thick. Design the fillet weld if the overlap is limited to 350mm.		CO1
Q 9	Two plates each of 200 x 8mm are to be joined using 20mm diameter 4.6 grade bolts to form a lap joint. The joint is supposed to transfer a facored load of 280 kN. Design the joint and suitable pitch for the bolts.		CO1
	SECTION-C		
Q 10	Design an I-section purlin, for an industrial building situated in Bidholi, to support a GI roof for the following data: Spacing of truss $c/c=5m$ Span of the truss = 12m Slope of truss = 30 degrees Spacing of purlins $c/c = 1.5m$ Weight of GI sheets = 120 N/mm2 Wind load normal to the roof = 1500 N/m	20	CO4
Q 11	Design a lintel over an opening of 3m. the lintel is made a wall 300mm thick. The lintel has to support a uniform load of 50 kN in addition to masonry. The weight of the masonry may be assumed to 18 kN/m3 and the height of brickwork above the lintel is 3.5m. OR Design a steel beam section whose compression flange is laterally supported		CO3
	throughout for supporting an auditorium for the following data: Clear span = 6m End bearings = 120m c/c spacing of beams = 3.5m		

Imposed load on beam = 8 kN/m^2	
Dead load including Self weight = 3.5 kN/m^2	

Name: Enrolme	ent No: UNIVERSITY WITH A PURPOSE		
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019		
Course: Design of Steel Structure Semester: Program: B.Tech. Civil Engineering Time 03 hrs Course Code: CEEG 3007 Max. Mark Total Pages: 3 Instructions: Answer all questions of Section A, B & C (Assume all the necessary data if necessary) (Internal Choice is there in Q 6-SectionB and Q		rs. ks: 100 Q 11-Section C)	
	SECTION A		
S. No.		Marks	CO
Q 1	Mention the advantages and disadvantages of steel structures?	4	CO1
Q 2	Name the different types of connections?	4	C01
Q 3	What are the factors that will govern the structural design?	4	CO1
Q 4	What are the load combinations for the design purposes?	4	CO1
Q 5	How the rolled steel beams are classified?	4	CO3
	SECTION B		
Q 6	Determine the strength and efficiency of the lap joint shown in figure. Bolt diameter is 16mm and grade of bolt is 4.6. The two plates two be joined are 10mm and 12 mm thick. 50 mm 50 mm 0 OR	10	CO1
	Two flats each 210mm x 8mm are to be jointed using 16 mm diameter , 4.6 grade bolts to form a lap joint. The joint is supposed to transfer a factored load of 250 kN. Design the joint and determine the suitable pitch.		

	65 mm		
	\65 mm ······ \ ▲ ○ ○		
Q 7	Design the fillet weld for the angle section iSA 80 x 50 x 10 mm, if the weld is to be done on its three sides as shown in figure.		
		10	CO1
Q 8	An ISA 100 x 75 x 10mm is connected with a gusset plate 12 mm thick with 2- 16mm diameter bolts of grade 4.6 as shown in figure. Determine total net area and effective area of the section. ISA 100 × $75 \times 10 \text{ mm}$ 2-16 mm diameter bolts	10	CO2
Q 9	A strut 0f 3.4m length in a truss is connected at each end with welding to the gusset plate. The strut is of a section ISA 100 x 100 x 10 mm. Determine its effective slenderness ratio.	10	CO2
	SECTION-C		
Q 10	Design an Channel-section purlin, for an industrial building situated in Bidholi, to support a GI roof for the following data: Spacing of truss c/c= 5m Span of the truss = 12m Slope of truss = 30 degrees Spacing of purlins c/c = 1.5m	20	CO4

	Weight of GI sheets = 130 N/mm2		
	Wind load normal to the roof = 1800 N/m		
Q 11	Design a laterally unsupported beam of span 3.5m. with maximum bending moment		
	550 kNm and maximum shear force 200 kN.		
	<u>OR</u>		
	Design a steel beam section whose compression flange is laterally supported		
	throughout for supporting a large hall for the following data:	20	CO3
	Clear span = 6.5 m	20	COS
	End bearings = 130m		
	c/c spacing of beams = 3 m		
	Imposed load on beam = 10 kN/m^2		
	Dead load including Self weight = 4 kN/m^2		