Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Programme Name: B.TECH EE IOT Course Name: Signal Conditioning and Telemetry Course Code: ICEG351 Semester: VI Time: 03 hrs Max. Marks: 100

Instructions: Attempt all questions.

	SECTION A		
S. No.		Marks	CO
Q 1	Draw and explain the operation and circuitry of Full-wave precision rectifier using Op-Amp and diodes.	5	CO2
Q 2	Name any four protocols for serial and parallel data transmission. Also, compare the advantages of serial vs. parallel data transmission.	5	CO4
Q 3	Draw and explain the block diagram of Data Acquisition System considering any Industrial Application.	5	CO4
Q 4	Define the selection criteria of operational amplifiers for any application.	5	CO2
Q 5	SECTION B(A) Find the full-scale analog output for a 16-bit DAC and its resolution, if V _R = 10 V.(B) Find the analog output of an unsigned 10-bit DAC with reference voltage of 10 Volts, if the digital input is B5H. Neglect all loading effects.	10	CO3
Q 6	In the Wheatstone bridge, the values of various arms are $P = 1000 \Omega$, $Q = 100 \Omega$, $R = 2005 \Omega$ and $S = 200 \Omega$. The battery has an emf of 5 V and negligible internal resistance. The galvanometer has a current sensitivity of 10 mm/ μ A and an internal resistance of 100 Ω . Calculate the deflection of galvanometer and the sensitivity of the bridge in terms of deflection per unit change in resistance. a) Calculate Resistance R required to balance the bridge, b) Deviation from the balanced condition ΔR , c) Thevenin equivalent source E_0 , d) Thevenin equivalent internal resistance of the bridge R_0 , e) Current through the galvanometer I_G , f) Deflection of Galvanometer θ , g) Sensitivity of the Wheatstone bridge S_B .	10	CO1
Q 7	A Kelvin double bridge each of the ratio arms $P = Q = p = q = 1 k\Omega$. The emf of the battery is 100 V and the resistance of 5 Ω is included in the battery circuit. The galvanometer has a resistance of 500 Ω and the resistance of the link connecting the unknown resistance to the standard resistance may be neglected. The bridge is balanced when the standard resistance S	10	C01

	= 0.001 Ω.						
	b) Determine the balance;c) Determine the	e current (ap	of the galvanom) through the unkn eter when the unkr	own resistance R, at own resistance R, is r has a sensitivity of		
Q 8	 A Maxwell's capacitance bridge is used to measure an unknown inductance in comparison with capacitance. The various values at balance; R2 = 400 Ω, R3 = 600 Ω, R4 = 1000 Ω, C4 = 0.5 μF. a) Draw the circuit diagram of the bridge circuit, as mentioned above. b) Formulate the necessary equations for Maxwell's Capacitance Bridge circuit. c) Calculate the values of R1 and L1. d) Calculate the value of storage (Q) factor of coil if frequency is 1000 Hz. 				10	C01	
			SECT	ION-C			
Q 9	Design a <u>Third-order Unity-gain Bessel High-Pass Filter</u> with the corner frequency (F _c) of 100 KHz. Use the following data for your design:						
	c s	-	Ai	Bi		20	CO2
		Filter 1 Filter 2	a1 = 0.756 a2 = 0.9996	b1 = 0 b2 = 0.4772	_		
Q 10 A					10	CO2	
Q 10 B	Determine the output of $30 \text{ k}\Omega$ 1 V 2 V 2 V 3 V $10 \text{ k}\Omega$ 2 V $10 \text{ k}\Omega$ 2 V $10 \text{ k}\Omega$ 2 V $10 \text{ k}\Omega$ $10 \text{ k}\Omega$ 2 V $10 \text{ k}\Omega$ $10 \text{ k}\Omega$	of the follow $20 \text{ k}\Omega$ 0 the follow 0 the follow 0 the follow 0 the follow		itry:		10	CO2

Name:

Enrolment No:

UNIVERSITY WITH A PURPOSE

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Programme Name: B.TECH EE IOT **Course Name: Signal Conditioning and Telemetry Course Code: ICEG351**

Semester: VI Time: 03 hrs Max. Marks: 100

Instructions: Attempt all questions.

	SECTION A		
S. No.		Marks	CO
Q 1	Draw and explain the telemetry architecture for small, medium and longer distances showing all components involved along with their details.	5	CO4
Q 2	Name any four protocols for serial and parallel data transmission. Also, compare the advantages of serial vs. parallel data transmission.	5	CO4
Q 3	and explain the block diagram of Data Acquisition System considering any strial Application.		CO4
Q 4	Draw and explain the working of 4-20 mA Current Loop in Analog Telemetry.	5	CO4
	SECTION B		
Q 5	(A) Find the full-scale analog output for a 16-bit DAC and its resolution, if $V_R = 10 \text{ V}$. (B) Find the analog output of an unsigned 10-bit DAC with reference voltage of 10 Volts, if the digital input is B5H. Neglect all loading effects.	10	CO3
Q 6	A highly sensitive Galvanometer can detect a current as low as 0.1 nA. This galvanometer is used in a Wheatstone bridge as a detector. The resistance of Galvanometer is negligible. Each arm of the bridge has a resistance of 1 K Ω . The input voltage applied to the bridge is 20 V. Calculate the smallest change in the resistance which can be detected. The resistance of the Galvanometer can be neglected as compared with the internal resistance of the bridge.	10	C01
Q 7	A four terminal resistor of approx. 50 $\mu\Omega$ resistance was measured with the help of a Kelvin's double bridge having the following components: Standard resistor = 100.03 Ω , inner ratio arms = 100.31 Ω and 200 Ω , outer ratio arms = 100.24 Ω and 200 Ω , resistance of the link connecting the standard resistance and the unknown resistance = 700 $\mu\Omega$. Calculate the value of the unknown resistance.		C01
Q 8	 In a Maxwell inductance bridge, arm AB consists of a coil with inductance L1 and resistance r1 in series with a non-inductive resistance R. Arm BC and coil CD are each a non-inductive resistance of 100 Ω. Arm AD consists of a standard variable inductor (L) of 32.7 Ω. Balance is obtained when L2 = 47.8 mH and R = 1.36 Ω. a) Draw the circuit diagram of the bridge circuit, as mentioned above. b) Formulate the necessary equations for Maxwell's Inductance Bridge circuit. c) Find the Resistance and inductance of the coil in the arm AB. 	10	CO1

	Design a <u>Fifth-order Unity-gain Butterworth Low-Pass Filter</u> with the corner frequency (F _c) of 60 KHz. Use the following data for your design:					
	Butterworth coefficient	s Ai	Bi		20	
	Filter 1	a1 = 1	b1 = 0	-	20	CO2
	Filter 2	a2 = 1.6180	b2 = 1			
	Filter 3	a3 = 0.6180	b3 = 1			
Q 10 A	A Sensor develops output of 20 to 200 mV maximum of range. Develop a signal cond output impedance and output voltage betw	litioning scheme w	,		10	CO2
Q 10 B	Figure shown below is an instrumentation voltage (Vo) if the input voltage (Vin) is 2 amplifier. $20 \text{ k}\Omega$ $V_{i} \circ V_{i} $	-		*	10	CO2