Name: Enrolme	nt No:					
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES						
END Semester Examination MAY 2019						
Course Name: Theory of plates & shells Semester						
Program: M. Tech (Structural Engg) Time: 03 hrs. Max. Marks: 100						
Instructions: Answer all the questions Course C			L 7012			
SECTION A						
S. No.		Marks	CO			
Q.1	Briefly explain the deflection profile of rectangular loaded plates.	5M	CO1			
Q.2	Write max deflections & stress produced in cylindrically plates with Built in edges.	5M CO2				
Q.3	Explain difference between bending theory & membrane theory of shells.	5M CO3				
Q.4	Write equations of equilibrium of shells.	5M	CO4			
SECTION B						
Q .5	Derive the deflection of uniformly loaded circular plate subjected to loading of intensity "q".	10M	CO1			
Q.6	Derive the differential equation for deflection for the symmetrical bending of a circular plate with lateral loads of the type $ \frac{d^3w}{dr^3} + \frac{1}{r}\frac{d^2w}{dr^2} - \frac{1}{r^2}\frac{dw}{dr} = \frac{Q}{D} $ Where Q = $ \int_{r}^{r} qrdr $ total shear force on the plate = $ \int_{r}^{r} qrdr $, q = intensity of lateral loading, r = radius, D = Flexural rigidity of the plate	10M	CO2			
Q.7	Derive the expression for conditions of equilibrium for shells of revolution.	10M	CO3			
Q.8	Derive the expression for equations of equilibrium of a shell OR	10M	CO4			
	A conical tank filled with liquid of density ϑ subjects to lateral forces that symmetrically distributes over conical surface. Obtain the expression for N_{φ} , N_{θ} & calculate the values	10M	CO4			
SECTION-C						
Q.9	Derive the expression for deflection & bending of rectangular loaded plate with one end fixed & other end simply supported	20M	CO2			
Q.10	Derive the expression for deflection & Bending moment of a cylindrical tank using shell theory					
	OR Derive the boundary conditions for simply supported cylindrical shells with the edge conditions or the end shells in a multiple group of shells.	20M	CO3			

Name:							
Enrolment No:							
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES							
END Semester Examination MAY 2019							
Course Name: Theory of plates & shells Semester: II							
Program: M. Tech (Civil Engg) Time: 03 hrs. Max. Marks: 100							
				L 7012			
Instructions: Answer all the questions Course Code: CIVL 7012 SECTION A SECTION A							
S. No.			Marks	СО			
Q.1	Write the Expression for deflection & slo	pe of circular plate subjected to UDL.	5M	CO1			
Q.2	Write down the curvature relationship of plate in arbitrary plane along <i>x</i> & <i>y</i> plane			CO2			
Q.3	Briefly discuss various classification of shells.			CO3			
Q.4	What are the probable loads that can com	5M	CO4				
SECTION B							
Q .5	Derive the expression for Bending moment	nt & curvature in pure bending of plates.	10M	CO1			
Q.6	A simply supported rectangular plate subjects to loading of Sine wave. Derive the expression for deflection & Bending moment. Adopt Navier's approach.			CO2			
Q.7	A horizontal circular pipe filled with liquid & simply supported at the ends with the pressure P_0 at the axis of the tube. Length of tube is L & radius "a". Calculate the values of membrane forces.			CO3			
Q.8	expression for N_{\varnothing} , $N_x \wedge N_{x \varnothing}$	Self-weight + imposed load). Derive the	10M	CO4			
	Calculate the membrane stress at centra cylindrical shell of 22m span,10m radiu	al span, quarter span & end section for a s & semi vertex angle 40° . Shell is 80mm	10M	CO4			
thick & subjected to all-inclusive UDL of 3kN/m ² SECTION-C							
0.0		bending of rectangular loaded plate with					
Q.9	partially fixed built in edges	bending of rectangular loaded plate with					
	1 5		20M	CO2			
Q10	Derive the deflection & bending of cylind						
		OR		CO3			
	A spherical dome of 15m radius & rise Calculate the various stresses developed i	4m carries an all-inclusive load of 3kN/m ² . n the shells due to this load.	20M				