Name:

**Enrolment No:** 



## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2019

Course: Fatigue, Fracture and Stress Analysis of Machine Component Program: M. TECH. (ROT EQUIP.) Course Code: MERE7005 Semester: II Time: 03 hrs. Max. Marks: 100

## Instructions:

| Q.1Describe stress intensity factors for Mode-I, Mode-II and Mode-III.Q.2Determine the critical crack length in a plate having center crack for Mode – I. The<br>critical stress intensity factor is $K_{IC}$ = 80 MPa $\sqrt{m}$ . The average stress applied is 150<br>MPa.Q.3Derive the expression for energy release rate for a beam of height 2h, thickness B<br>and transverse bending moment M. Modulus of elasticity of the material of the beam<br>is E.Q.4Explain R-curves for ductile materials with appropriate diagrams. What happens to<br>the slope of R-curves with increasing crack length?SECTION BQ.6Far field stress applied is 140 MPa and length of the edge crack is 25 mm. The<br>factors are given as $\beta^2 = 1.14$ and $H = 6$ . Given that $E= 205$ GPa, n=6.6 and<br>$F=1.2 \times 1018$ (MPa) <sup>66</sup> . Determine the value of J-integral.Q.7An edge crack in large plate is 2.9 mm long. The cyclic load of constant amplitude<br>is $\sigma_{max}$ =300 MPa and $\sigma_{min}$ =120 MPa. If $K_{IC}$ =140 MPa $\sqrt{m}$ then calculate,<br>(A) propagation life up-to failure<br>(B) propagation life up-to crack length of 22 mm.Q.8(A)What are the differences between LEFM and EPFM?<br>(B) Explain SN curves for fatigue failure. | Marks          | CO  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|
| Q.2Determine the critical crack length in a plate having center crack for Mode – I. The<br>critical stress intensity factor is $K_{IC}$ = 80 MPa $\sqrt{m}$ . The average stress applied is 150<br>MPa.Q.3Derive the expression for energy release rate for a beam of height 2h, thickness B<br>and transverse bending moment M. Modulus of elasticity of the material of the beam<br>is E.Q.4Explain R-curves for ductile materials with appropriate diagrams. What happens to<br>the slope of R-curves with increasing crack length?Q.6Far field stress applied is 140 MPa and length of the edge crack is 25 mm. The<br>factors are given as $\beta^2 = 1.14$ and H = 6. Given that E= 205 GPa, n=6.6 and<br>F=1.2×1018 (MPa) <sup>66</sup> . Determine the value of J-integral.Q.7An edge crack in large plate is 2.9 mm long. The cyclic load of constant amplitude<br>is $\sigma_{max}$ =300 MPa and $\sigma_{min}$ =120 MPa. If $K_{IC}$ =140 MPa $\sqrt{m}$ then calculate,<br>(A) propagation life up-to crack length of 22 mm.Q.8(A)What are the differences between LEFM and EPFM?<br>(B) Explain SN curves for fatigue failure.                                                                                                                                    | 5              | C01 |
| critical stress intensity factor is $K_{IC}$ = 80 MPa $\sqrt{m}$ . The average stress applied is 150<br>MPa.Q.3Derive the expression for energy release rate for a beam of height 2h, thickness B<br>and transverse bending moment M. Modulus of elasticity of the material of the beam<br>is E.Q.4Explain R-curves for ductile materials with appropriate diagrams. What happens to<br>the slope of R-curves with increasing crack length?SECTION BQ.6Far field stress applied is 140 MPa and length of the edge crack is 25 mm. The<br>factors are given as $\beta^2 = 1.14$ and $H = 6$ . Given that E= 205 GPa, n=6.6 and<br>F=1.2×1018 (MPa) <sup>6.6</sup> . Determine the value of J-integral.Q.7An edge crack in large plate is 2.9 mm long. The cyclic load of constant amplitude<br>is $\sigma_{max}$ =300 MPa and $\sigma_{min}$ =120 MPa. If $K_{IC}$ =140 MPa $\sqrt{m}$ then calculate,<br>(A) propagation life up-to crack length of 22 mm.Q.8(A)What are the differences between LEFM and EPFM?<br>(B) Explain SN curves for fatigue failure.                                                                                                                                                                                                                  | 5              |     |
| MPa.Q.3Derive the expression for energy release rate for a beam of height 2h, thickness B<br>and transverse bending moment M. Modulus of elasticity of the material of the beam<br>is E.Q.4Explain R-curves for ductile materials with appropriate diagrams. What happens to<br>the slope of R-curves with increasing crack length?SECTION BQ.6Far field stress applied is 140 MPa and length of the edge crack is 25 mm. The<br>factors are given as $\beta^2 = 1.14$ and $H = 6$ . Given that $E= 205$ GPa, n=6.6 and<br>$F=1.2 \times 1018$ (MPa) <sup>66</sup> . Determine the value of J-integral.Q.7An edge crack in large plate is 2.9 mm long. The cyclic load of constant amplitude<br>is $\sigma_{max}=300$ MPa and $\sigma_{min}=120$ MPa. If $K_{IC}=140$ MPa $\sqrt{m}$ then calculate,<br>(A) propagation life up-to failure<br>(B) propagation life up-to crack length of 22 mm.Q.8(A)What are the differences between LEFM and EPFM?<br>(B) Explain SN curves for fatigue failure.                                                                                                                                                                                                                                                                             |                | CO4 |
| Q.3Derive the expression for energy release rate for a beam of height 2h, thickness B<br>and transverse bending moment M. Modulus of elasticity of the material of the beam<br>is E.Q.4Explain R-curves for ductile materials with appropriate diagrams. What happens to<br>the slope of R-curves with increasing crack length?SECTION BQ.6Far field stress applied is 140 MPa and length of the edge crack is 25 mm. The<br>factors are given as $\beta^2 = 1.14$ and H = 6. Given that E= 205 GPa, n=6.6 and<br>F=1.2×1018 (MPa) <sup>66</sup> . Determine the value of J-integral.Q.7An edge crack in large plate is 2.9 mm long. The cyclic load of constant amplitude<br>is $\sigma_{max}$ =300 MPa and $\sigma_{min}$ =120 MPa. If K <sub>IC</sub> =140 MPa $\sqrt{m}$ then calculate,<br>(A) propagation life up-to failure<br>(B) propagation life up-to crack length of 22 mm.Q.8(A)What are the differences between LEFM and EPFM?<br>(B) Explain SN curves for fatigue failure.                                                                                                                                                                                                                                                                                     |                | 001 |
| and transverse bending moment M. Modulus of elasticity of the material of the beam<br>is E.Q.4Explain R-curves for ductile materials with appropriate diagrams. What happens to<br>the slope of R-curves with increasing crack length?SECTION BQ.6Far field stress applied is 140 MPa and length of the edge crack is 25 mm. The<br>factors are given as $\beta^2 = 1.14$ and $H = 6$ . Given that $E= 205$ GPa, n=6.6 and<br>$F=1.2 \times 1018$ (MPa) <sup>6.6</sup> . Determine the value of J-integral.Q.7An edge crack in large plate is 2.9 mm long. The cyclic load of constant amplitude<br>is $\sigma_{max}=300$ MPa and $\sigma_{min}=120$ MPa. If $K_{IC}=140$ MPa $\sqrt{m}$ then calculate,<br>(A) propagation life up-to failure<br>(B) propagation life up-to crack length of 22 mm.Q.8(A)What are the differences between LEFM and EPFM?<br>(B) Explain SN curves for fatigue failure.                                                                                                                                                                                                                                                                                                                                                                         |                |     |
| Q.4Explain R-curves for ductile materials with appropriate diagrams. What happens to<br>the slope of R-curves with increasing crack length?SECTION BQ.6Far field stress applied is 140 MPa and length of the edge crack is 25 mm. The<br>factors are given as $\beta^2 = 1.14$ and H = 6. Given that E= 205 GPa, n=6.6 and<br>F=1.2×1018 (MPa) <sup>6.6</sup> . Determine the value of J-integral.Q.7An edge crack in large plate is 2.9 mm long. The cyclic load of constant amplitude<br>is $\sigma_{max}$ =300 MPa and $\sigma_{min}$ =120 MPa. If $K_{IC}$ =140 MPa $\sqrt{m}$ then calculate,<br>(A) propagation life up-to failure<br>(B) propagation life up-to crack length of 22 mm.Q.8(A)What are the differences between LEFM and EPFM?<br>(B) Explain SN curves for fatigue failure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5              | CO2 |
| In the slope of R-curves with increasing crack length?SECTION BQ.6Far field stress applied is 140 MPa and length of the edge crack is 25 mm. The<br>factors are given as $\beta^2 = 1.14$ and $H = 6$ . Given that $E= 205$ GPa, n=6.6 and<br>$F=1.2\times1018$ (MPa) <sup>6.6</sup> . Determine the value of J-integral.Q.7An edge crack in large plate is 2.9 mm long. The cyclic load of constant amplitude<br>is $\sigma_{max}=300$ MPa and $\sigma_{min}=120$ MPa. If $K_{IC}=140$ MPa $\sqrt{m}$ then calculate,<br>(A) propagation life up-to failure<br>(B) propagation life up-to crack length of 22 mm.Q.8(A)What are the differences between LEFM and EPFM?<br>(B) Explain SN curves for fatigue failure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |     |
| SECTION BQ.6Far field stress applied is 140 MPa and length of the edge crack is 25 mm. The<br>factors are given as $\beta^2 = 1.14$ and H = 6. Given that E= 205 GPa, n=6.6 and<br>F=1.2×1018 (MPa) <sup>6.6</sup> . Determine the value of J-integral.Q.7An edge crack in large plate is 2.9 mm long. The cyclic load of constant amplitude<br>is $\sigma_{max}$ =300 MPa and $\sigma_{min}$ =120 MPa. If $K_{IC}$ =140 MPa $\sqrt{m}$ then calculate,<br>(A) propagation life up-to failure<br>(B) propagation life up-to crack length of 22 mm.Q.8(A)What are the differences between LEFM and EPFM?<br>(B) Explain SN curves for fatigue failure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <sup>0</sup> 5 | CO1 |
| Q.6Far field stress applied is 140 MPa and length of the edge crack is 25 mm. The<br>factors are given as $\beta^2 = 1.14$ and H = 6. Given that E= 205 GPa, n=6.6 and<br>F=1.2×1018 (MPa) <sup>6.6</sup> . Determine the value of J-integral.Q.7An edge crack in large plate is 2.9 mm long. The cyclic load of constant amplitude<br>is $\sigma_{max}$ =300 MPa and $\sigma_{min}$ =120 MPa. If K <sub>IC</sub> =140 MPa $\sqrt{m}$ then calculate,<br>(A) propagation life up-to failure<br>(B) propagation life up-to crack length of 22 mm.Q.8(A)What are the differences between LEFM and EPFM?<br>(B) Explain SN curves for fatigue failure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | CUI |
| $\begin{array}{c c} factors are given as $\beta^2 = 1.14$ and $H = 6$. Given that $E= 205$ GPa, $n=6.6$ and $F=1.2\times1018$ (MPa)^{6.6}$. Determine the value of J-integral.\\ \hline Q.7 An edge crack in large plate is 2.9 mm long. The cyclic load of constant amplitude is $\sigma_{max}=300$ MPa and $\sigma_{min}=120$ MPa. If $K_{IC}=140$ MPa$\sqrt{m}$ then calculate, (A) propagation life up-to failure (B) propagation life up-to crack length of 22 mm.\\ \hline Q.8 (A)What are the differences between LEFM and EPFM? (B) Explain SN curves for fatigue failure.\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |     |
| F=1.2×1018 (MPa) <sup>6.6</sup> . Determine the value of J-integral.Q.7An edge crack in large plate is 2.9 mm long. The cyclic load of constant amplitude<br>is $\sigma_{max}$ =300 MPa and $\sigma_{min}$ =120 MPa. If $K_{IC}$ =140 MPa $\sqrt{m}$ then calculate,<br>(A) propagation life up-to failure<br>(B) propagation life up-to crack length of 22 mm.Q.8(A)What are the differences between LEFM and EPFM?<br>(B) Explain SN curves for fatigue failure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |     |
| Q.7An edge crack in large plate is 2.9 mm long. The cyclic load of constant amplitude<br>is $\sigma_{max}$ =300 MPa and $\sigma_{min}$ =120 MPa. If $K_{IC}$ =140 MPa $\sqrt{m}$ then calculate,<br>(A) propagation life up-to failure<br>(B) propagation life up-to crack length of 22 mm.Q.8(A)What are the differences between LEFM and EPFM?<br>(B) Explain SN curves for fatigue failure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | CO4 |
| is $\sigma_{max}$ =300 MPa and $\sigma_{min}$ =120 MPa. If $K_{IC}$ =140 MPa $\sqrt{m}$ then calculate,(A) propagation life up-to failure(B) propagation life up-to crack length of 22 mm.Q.8(A)What are the differences between LEFM and EPFM?(B) Explain SN curves for fatigue failure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |     |
| (A) propagation life up-to failure(B) propagation life up-to crack length of 22 mm.Q.8(A)What are the differences between LEFM and EPFM?(B) Explain SN curves for fatigue failure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |     |
| (B) propagation life up-to crack length of 22 mm.Q.8(A)What are the differences between LEFM and EPFM?<br>(B) Explain SN curves for fatigue failure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10             | CO  |
| Q.8(A)What are the differences between LEFM and EPFM?(B) Explain SN curves for fatigue failure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10             | CO3 |
| (B) Explain SN curves for fatigue failure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |     |
| OP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10             | CO3 |
| OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10             |     |
| Explain clip gauge method for measurement of COD with appropriate diagrams.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |     |
| Q.9 What is the relationship between $K_I$ and $G_I$ for the conditions of plane stress and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10             |     |
| plane strain?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | CO2 |
| If E=210 GPa, v=0.3 and K <sub>I</sub> =66 MPa $\sqrt{m}$ then find G <sub>I</sub> for the conditions of plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |     |
| stress and plane strain. SECTION-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |     |

| Q.11 | A steel plate has a material of tensile yield strength $\sigma_{yp}$ =400 MPa. Width is 120 mm<br>and thickness of the plate is 12 mm. There is a center crack of 2a=45 mm. If a stress<br>of 120 MPa is applied then calculate effective crack length.<br>OR<br>A center cracked plate of half width W= 190 mm and thick B= 20 mm is pulled<br>normal to the crack length (half crack length a = 40 mm) with a stress of $\sigma$ .<br>Calculate the maximum value of $\sigma$ that can be applied without further crack growth.<br>Given J <sub>p</sub> =405 kJ/m <sup>2</sup> , n=6, $\alpha$ =5.6, tensile yield strength $\sigma_{yp}$ =400 MPa and $\varepsilon_0$ =0.002. | 20 | CO4 |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
| Q.12 | (A) A uniform plate has a single center crack. The uniform tensile stress applied is<br>120 MPa. If half crack length a = 25 mm and width of the plate 2W= 150 mm then<br>calculate K <sub>I</sub> . Given $f(\alpha)=1.12-0.23 \alpha+10.55 \alpha^2-21.72 \alpha^3+30.39 \alpha^4$ .<br>(B) A plate has double edge cracks. A uniform tensile stress of 150 MPa is applied.<br>Half crack length is a=25 mm and width of the plate is 2W= 100 mm. Determine K <sub>I</sub> .<br>Given $f(\alpha)=1.12-0.20 \alpha-1.20 \alpha^2+1.93 \alpha^3$ .                                                                                                                               | 20 | CO3 |