

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2019

Program: B.Tech, Fire & Safety Engineering

Semester: VI

Course: Process Instrumentation and Control Engineering

Time: 03 hrs.

Course Code: ECEG 3009 Max. Marks: 100

No. of pages: 2

SECTION A (20 marks) (All questions are compulsory)

S. No.		Marks	CO
Q1	A thermocouple gives the following readings for temperature. Determine sensitivity.	its	
	Temperature (°C): 5 8 11 14 17	4	CO1
	Voltage (mV): 0.3 0.5 0.7 0.9 1.1		
Q2	a) An example of a head type flow meter isb) Give the expression to determine the flow rate through a head type flow meter at mention what each term represents.	nd 1+3	CO4
Q3	Define the following a) Sensitivity of an instrument b) Zero drift	2+2	CO1
Q4	Distinguish between: a) Accuracy and precision b) Repeatability and reproducibility	2+2	CO1
Q5	Draw the diagram and write the force balance equation of an ideal spring with a) Displacement at one end b) Displacement at both ends	2+2	CO2
	SECTION B (40 marks) (All questions are compulsory)	·	

Q6	The medical condition for hyperpyrexia is described as when someone is running a body temperature of more than 106.7°F. Express the level of hyperpyrexia in (a) K (b) °C (c) R	10	CO1
Q7	Explain a simple thermal system with the help of a diagram and define capacitance	10	CO2

	and resistance of a thermal system.				
Q8	Draw the block diagram of a closed loop control system and derive the expression which relates the closed-loop system dynamics to the dynamics of the feedforward elements and feedback elements of such a system.				
Q9	A manometer using oil with relative density 0.864 as measuring liquid has a well of diameter 20 mm and tube diameter 2 mm. If the angle at which the tube is to the horizontal is 16.22°, determine the scale deflection for a pressure of 1mm head of water.(Assume 1mm of water =9.81 Pa)				
	OR	10	CO4		
	What is meant by time of flight method of level measurement? List the instruments that are based on this principle? With the help of a diagram explain the working of one such level indicator system. Also mention two advantages.				
	SECTION-C (40 marks) (All questions are compulsory)				
Q10	Give the classifications of industrial controllers. Explain their characteristics. Which controller is best suited for a process which requires frequent shut-down and start-ups and why?				
	OR				
	Write the differential equations governing the mechanical system shown in fig. and determine its transfer function.		CO1,		
	f(t)	20	CO3		
	K_1 M_1 M_2 K_2 K_2 K_3 K_4 K_5 K_6				
Q11	Give the appropriate temperature sensor/instrument for the following applications, and describe its working principle with the help of a diagram.				
	a) Temperature detector in a fire alarm requiring high sensitivity b) The sensor arrangement which can be used to provide portable power in spacecraft applications c) A furnace interior clouded with fumes d) Temperature sensing inside a reactor operating between 200-600 °C at a point which is difficult to access e) Metals being hot- worked at temperatures of about 3500 °C	20	CO5		

Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2019

Program: B.Tech, Fire & Safety Engineering

Semester: VI

Course: Process Instrumentation and Control Engineering

Time 03 hrs. Max. Marks: 100

No. of pages: 2

Course Code: ECEG 3009

SECTION A (20 marks) (All questions are compulsory)

S. No.								Marks	CO
Q1	A thermocouple gives the following readings for temperature. Determine its sensitivity.					4	CO1		
	Temperature (°C): 3 6 9 12 18								
	Voltage (mV):	0.2	0.4	0.6	0.8	1.0			
Q2	a) The open channel refers to any conduit in which liquid flows with ab) Give two examples of open channel flows.c) Mention two instruments used to measure the flow in open channels.				4	CO4			
Q3	Explain the following a) Linearity of an instrument b) Hysteresis error					2+2	CO1		
Q4	Distinguish between open loop and closed loop systems.					2+2	CO1		
Q5	Draw the diagram an a) Displacement a b) Displacement a	at one en	d	nce equation	of an ide	al dashpot w	ith	2+2	CO2

SECTION B (40 marks) (All questions are compulsory)

Q6	Hyperthermia of 5°C (i.e., 5°C rise above the normal body temperature) is considered fatal. Express this fatal level of hyperthermia in (a) K, (b) °F (c) R.	10	CO1
Q7	Explain liquid level control system with the help of a diagram and define capacitance and resistance of a liquid level control system.	10	CO2
Q8	What is the advantage of using block diagrams to represent control systems? With the help of suitable illustrations, mention the various components of a block diagram.	10	CO3

	Also give the generalized expression for the closed loop transfer function of a control system.			
Q9	A thermocouple is known to have poor sensitivity. Justify this statement. Also state the thermocouple laws and thermo-electric effects based on which the thermocouple operates. OR A Paper manufacturing industry stores saw-dust in a cylindrical tank of height 15m. In the process of filling the tank, a level indicator is required to be installed. Which instrument will be best suited for this? With the help of a diagram explain the working of such a level indicator system. Also mention two advantages.			
	SECTION-C (40 marks) (All questions are compulsory)			
Q10	Give the appropriate temperature sensor/instrument for the following applications, and describe its working principle with the help of a diagram. a) Temperature detector in a fire alarm requiring high sensitivity b) The sensor arrangement which can be used to provide portable power in spacecraft applications c) A furnace interior clouded with fumes d) Temperature sensing inside a reactor operating between 200-600 °C at a point which is difficult to access e) Metals being hot- worked at temperatures of about 3500 °C	20	CO5	
Q11	Write the differential equations governing the mechanical system shown in fig. and determine its transfer function. $ \begin{array}{cccccccccccccccccccccccccccccccccc$	20	CO1, CO3	