Name:

**Enrolment No:** 



## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

## Course: Process Design and Flow sheeting Program: M.Tech CE+PDE Course Code: CHPD 7008 Instructions:

Semester: II Sem Time 03 hrs. Max. Marks: 100

| SECTION A |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| S. No.    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Marks | CO  |
| Q 1       | <ul> <li>Water is heated at atmospheric pressure from 40°C to 80°C using two different processes. In Process I, the heating is done by a source at 80°C. In Process II, the water is first heated from 40°C to 60°C by a source at 60°C and then from 60°C to 80°C by another source at 80°C.</li> <li>(a) Enthalpy change of water in process I is greater than enthalpy change in process II</li> <li>(b) Enthalpy change of water in process II is greater than enthalpy change in process I</li> <li>(c) Process I is closer to reversibility</li> <li>(d) Process II is close to reversibility</li> </ul> | 5     | C01 |
| Q 2       | In a venturi meter $\Delta P_1$ & $\Delta P_2$ are the pressure drops corresponding to volumetric flow rates $Q_1$ & $Q_2$ If $Q_2/Q_1 = 2$ , then calculate $\Delta P_2/\Delta P_1$                                                                                                                                                                                                                                                                                                                                                                                                                           | 5     | CO1 |
| Q 3       | Describe the Line numbering philosophy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5     | CO2 |
| Q 4       | Explain the working of the control loop<br>$\begin{array}{c} \hline \square \\ \hline \square \\ \hline \square \\ \hline \square \\ \hline \\ \hline \\ \hline \\ \hline \\$                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5     | CO2 |
|           | SECTION B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |     |
| Q 5       | Draw the symbols for the followings1. Horizontal Centrifugal Pump3. Centrifugal Compressor5. Kettle type exchanger7. Dome roof tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15    | CO2 |
|           | /. Dome toot talk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |     |

|     | and "detail implied"                                                                                                                                                                                                          |    |             |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------|--|
|     | 1. Flow control (orifice) 2. Shut down valve 3. Temperature control                                                                                                                                                           |    |             |  |
|     | 4. Pressure Instrument 5. Pressure control                                                                                                                                                                                    |    |             |  |
| Q 7 | Describe working principle of five (5) different types of flow measuring instruments                                                                                                                                          | 15 | CO3         |  |
| Q 8 | Describe the main components of a Process Simulator Structure                                                                                                                                                                 | 10 | CO5         |  |
|     | SECTION-C                                                                                                                                                                                                                     |    |             |  |
| Q 9 | <ul> <li>Draw a P&amp;ID diagram of a 3 phase Horizontal Separator</li> <li>Or</li> <li>Draw a P&amp;ID diagram of 3x50% Pumping system (Include suction vessel and discharge vessel, discharge control valve etc.</li> </ul> | 25 | CO2/<br>CO4 |  |

Name:

**Enrolment No:** 



## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

## Course: Process Design and Flow sheeting Program: M.Tech CE+PDE Course Code: CHPD 7008 Instructions:

Semester: II Sem Time 03 hrs. Max. Marks: 100

| SECTION A |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |     |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|
| S. No.    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Marks          | CO  |
| Q 1       | Describe how pressure drop due to friction varies with diameter of a circular pipe.<br>Deduce the equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5              | CO1 |
| Q 2       | Classify the five differences between PFD and P&ID.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5              | CO2 |
| Q 3       | Apply summation equation for calculation of dew point & bubble point for a multi component system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5              | CO3 |
| Q 4       | Provide an argument why outlet line size of a PSV needs to be larger than the inlet line size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5              | CO4 |
|           | SECTION B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |     |
| Q 5       | Draw the symbols for the followings2. Veritcal Inline Centrifugal Pump4. Centrifugal Blower6. Agitator / Mixer8. Dome roof tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15             | CO2 |
| Q 6       | Fluid: Water         Flow rate: 20 m³/hr         Source Equipment Pressure: 10 barg         Source Equipment Temperatue: 40 °C         Length from source equipment to the Pump: 10 m         Source equipment is Half Filled. ID of the vessel is 4m.         Elevation of source equipment bottom from Pump centerline: 4 m         Destination vessel is at pressure 20 barg and same elevation as that of source vessel.         1.       Draw the PFD of the system         5       2.         Calculate the suction line size to the Pump.       10         Assume:       1.         Velocity criteria of 1.4 m/s & pressure drop criteria of 1.5 bar/100 m         2.       Consider NPS as ID of the Pipe. | 5 + 10<br>= 15 | CO3 |

|     | 3. Consider Laminar flow in the line.                                                                                                                                                                                             |    |     |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|--|--|
| Q 7 | <ul> <li>Construct a P&amp;ID of centrifugal pump using the followings instrument loops:</li> <li>2. Flow control 2. Shut down valve 3. Level control 4. Cascading Control (choose appropriate controls for cascading)</li> </ul> | 20 | CO4 |  |  |
|     | SECTION-C                                                                                                                                                                                                                         |    |     |  |  |
| Q 8 | Describe the different steps followed for conversing a model for1-2 Shell & Tube<br>Heat Exchanger or 3 phase separator in a simulation software (viz. <b>Aspen Hysys</b> )                                                       | 10 | CO5 |  |  |
| Q 9 | Using data (assume) form Question No 8<br>Draw a P&ID diagram of 1-2 Shell & Tube Heat Exchanger.<br>Or<br>Draw a P&ID diagram of a 3 phase Horizontal Separator                                                                  | 20 | C05 |  |  |