Name:							
Enrolment No:							
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES							
End Semester Examination, May 2019							
Course Course	: Turbulence Modelling Code: ASEG7026	Semester :	II				
	nme : M.Tech CFD	Semester .					
Time <th::03 hrs.<="" th="">Max. Marks: 100</th::03>							
Instruct	Instructions : All questions are compulsory						
	Assume data if missing.	SECTION A					
C N-	-						
S. No.	Freelain the second of the heat of the first difference	h	Marks	CO			
Q 1	Explain the concept of turbulent diffusivi		4	CO1			
Q 2	Emphasis on different phases of transition		4	CO1			
Q 3	Discuss the significance of correlation fur		4	CO2			
Q 4		uation in its Reynolds averaged form erty + Fluctuating property) by applying	4	CO3			
Q 5	Outline the role of eddy viscosity and edd	ly diffusivity in RANS.	4	CO4			
		SECTION B					
Q 6	Discuss all the basic properties of turbule	nt flow in detail	10	CO1			
Q 7	With the help of diagram, explain in detail	il about the energy cascading mechanism in					
	turbulent flow.						
		OR on $u(t) = Ae^{-t/\tau} + B \cos(\omega t)$. Presuming this					
		t field variable with zero-mean fluctuations,	10	CO2			
		ing time-dependent average, $Ae^{-t/\tau}$, what					
		overy of the decaying average? Moreover,					
	what condition on Δt leads to suppression						
Q 8		Eddy Simulation (LES) turbulence model.	10	CO3			
	1 0	LES, the problem is partially modelled and roper reasoning, justify the above sentence.	10	COS			
Q 9		lation models. On what parameters, the	10	CO3			
	selection of the simulation depends.		10	005			
SECTION-C							
Q 10	Illustrate Kolmogorov Universal Law. En	mphasis on all the mathematical parameters	20	CO2			
		esis of Kolmogorov on turbulence in detail.					
Q 11	Emphasis on the formulate following RA	NS models:	20	CO4			
	i. Mixing Length Model ii. $k - \varepsilon$ model						
	iii. Reynolds Stress Model (RSM)						
		OR					
			1				

Empl	hasis on the formulate following RANS models:	
i. ii.	Spalart-Allmaras model k – ω model	
iii.	SST k – ω model	

Name:	ent No:				
Enrolme	ent No:				
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019 Course : Turbulence Modelling		: II : 100			
	SECTION A				
S. No.		Marks	CO		
Q 1	Explain the concept of turbulent kinetic energy.	4	CO1		
Q 2	Explain diffusion, dissipation and production in turbulent flow.	4	CO1		
Q 3	Discuss in brief about degree of turbulence.	4	CO2		
Q 4	Convert steady continuity equation in its Reynolds averaged form (Instantaneous property = Mean property + Fluctuating property) by applying averaging rules.		CO3		
Q 5	Turbulent flows are highly energetic as well as dissipative in nature. Illustrate the phenomenon of transfer and dissipation of energy in turbulence.	4	CO4		
SECTION B					
Q 6	With the help of a neat diagram, discuss in details about the turbulent boundary layer. How it differs from laminar boundary layer? Justify your answer.	10	CO1		
Q 7	Derive the equation for the kinetic energy of the average flow field. OR Estimate the boundary layer thicknesses on the underside of the wing of a large commercial airliner on its landing approach. Use the flat-plate results, a chord-length distance of x = 8 m, a flow speed of 100 m/s, and a nominal value of k = 0.4.	10	CO2		
Q 8	Differentiate Filtered Navier Stokes Equation from its complete form. Underline the significance of Filtered form in turbulence modelling.	10	CO3		
Q 9	Compare DNS, LES and RANS simulation models. On what parameters, the selection of the simulation depends.	10	CO3		
SECTION-C					
Q 10	Illustrate the application Probability Density Function and Averaging in modelling the turbulent flow.	20	CO2		
Q 11	Apply Reynold averaging to derive Reynold Averaged Navier Stokes Equation for turbulent flow.	20	CO4		