N	a	n	n	Δ	•
⊥ 1	а	ш	ш	·	۰

Enrolment No:

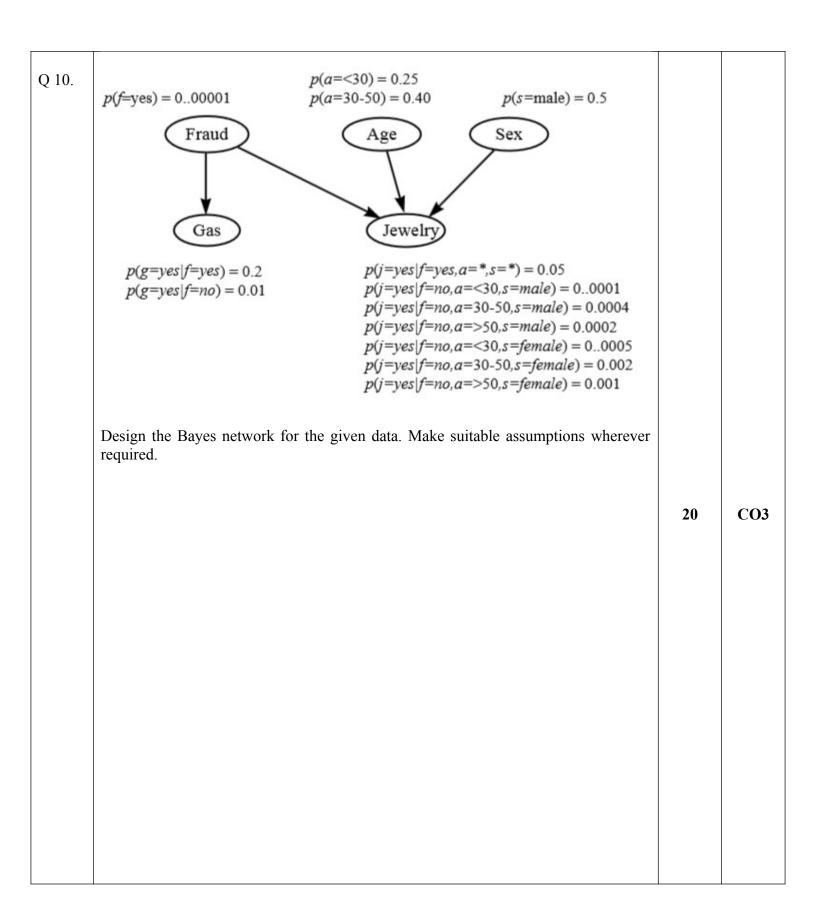
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

Mid Semester Examination, May 2019

Programme Name: B.Tech-Mechatronics
Course Name: Artificial Intelligence

Time : 02 hrs Max. Marks : 100

Semester: 8th


Course Code : ELEG 442

Nos. of page(s) : 02

Instructions:

SECTION A (Attempt all 5 Questions)-20 Marks

S. No.		Marks	CO
Q 1.	Differentiate between breadth first and depth first search	4	CO2
Q 2.	Define the terms Current space and State Space in Hill Climbing	4	CO2
Q 3.	Write a program in LISP to demonstrate the iterative concept.	4	CO1
Q 4.	Discuss any one real life AI application in the field of mechatronics.	4	CO3
Q 5.	Explain De Morgan's law.	4	CO3
	SECTION B -40 Marks		
Q 6.	What are three possible scenarios when one might turn to use EM (Expectation Maximization)	10	CO3
Q 7.	A horse that is registered for today's race is not a thoroughbred. Every horse registered for today's race has won a race this year. Therefore a horse that has won a race this year is not a thoroughbred.	10	CO2
Q 8.	Represent in the Knowledge form.	10	CO5
Q 9.	Explain Prior Posterior and likelihood with suitable example.	10	CO1
	OR		
Q 9.	Differentiate between Frequentist approach and Bayesian approach with suitable example.	10	CO3
	SECTION-C-40 Marks		

Q 11.	Max		
	Min Max Min Min Min Min Max Min Min Max Min	20	CO5
	OR		
Q 11.	Perform A* algorithm on given figure, Write down queue generated at each step.	20	CO5

Name:	UPES
Enrolment No:	UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

Mid Semester Examination, May 2019

Programme Name: B.Tech-Mechatronics Semester: 8th
Course Name: Artificial Intelligence Time: 02 hrs
Course Code: ELEG 442 Max. Marks: 100

Nos. of page(s) : 02

Instructions:

SECTION A (Attempt all 5 Questions)-20 Marks

S. No.		Marks	CO
Q 1.	Differentiate between forward and backward chaining.	4	CO2
Q 2.	Define the terms shoulder and global maximum in Hill Climbing algorithm.	4	CO2
Q 3.	Write a program in LISP to demonstrate recursive concept.	4	CO1
Q 4.	Discuss any one real life AI application in the field of bioinformatics.	4	CO3
Q 5.	Discuss AND OR Graph.	4	CO3
	SECTION B -40 Marks		
Q 6.	What are three possible scenarios when one might turn to use EM (Expectation Maximization)	10	CO4
Q 8.	shoulder shoulder shoulder "flat" local maximum "flat" local maximum state space Explain the terms in given figure. Explain the laws of Equivalence for quatifiers.	10	CO3
		10	CO2
Q 9.	Discuss Skolemnisation concept with suitable example	10	CO5
	OR		

	Discuss Horn's Clause with suitable example	10	CO5
	SECTION-C-40 Marks		
Q 10.	Sunny hot high false N sunny hot high true N correst hid high false P rain cool normal false P rain cool normal true N sunny mild high false N sunny cool normal true P sunny mild high true P sunny worcast mild high true P surny worcast mild high true P sunny worcast mild high true P sunny temperature = cool humidity = high windy = false for the given values find out the probability to fall in category of play or not play.	20	CO3
Q 11.	$\begin{array}{ c c c c c } \hline & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ &$	20	C04
	satisfiable unsatisfiable Justify the given figure with suitable examples and with support of propositional logic		

Q 11.	Discuss 1.Recursive transition NETS		
	2.Augmented Transition NETS	20	CO4
	3.Certianity Factor	20	CO4
	4.Constraint Specification Problem Game		