Name:

Enrolment No:

UPES

Semester

: VIII

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2019

Programme Name: B. Tech (CE+RP)

Course Name	: Process Modelling and Simulation	Time :	03 hrs
Course Code	: CHEG440	Max. Marks	: 100

Nos. of page(s) : 02

Instructions: 1) Answer the questions section wise in the answer booklet. 2) Assume suitable data wherever necessary. The notations used here have the usual meanings.

SECTION A (Total Marks: 3 x 10 = 30)

> Attempt <u>all</u> the questions.

S. No.											Marks	CO
Q 1	The instantaneous flow rate of oil flowing through a pipe is reported as follows:											
	Time, min	0	15	30	45	60	75	90	105	120		
	Flow rate, kg/ min	45	35	30	30	33.33	38.33	43.33	50	60	10	CO3
	Calculate using Sim				flowing i	n the pipe	during	the two-	hour pe	riod		
Q 2	Schematically represent the structure of a simple artificial neural network and explain the terms involved.					work and	10	CO5				
Q 3	Explain in examples.		about	boundar	y condit	ions and	initial	condition	ns with	suitable	10	CO1
						F otal Ma n npt <u>any t</u> r		,				
Q 4	i)	agitate steady K and at 800 of wat coolin	ed tank c state pro 363 K, 0 kg/h ha ter is 29	ontainin ocess. T respectiv aving a l 8 K. (a) suddenl	g 10,000 he inlet a vely. Thi heat capa) Calcula	kg of aci and outlet is is main acity of 4 ite the ou	id and le tempera tained b 187 J/kg ttlet tem	aves at that atures of y cooling .K. The perature	he same the aci g water inlet ter of wat	rs a well- e rate in a d are 443 c, flowing nperature er. (b) If cid in the	10	CO3
	ii)	Write	down	the uns	•	ate heat generation		-		for one- ODE.	10	CO2

Q 5	 i) Distinguish between sequential modular and equation-based strategy used for process flowsheet simulation. ii) Develop a set of model equations for a weak acid and strong base pH system. 	10 10	CO4 CO2
Q 6	Develop a mathematical model for a jacketed CSTR, where an irreversible, exothermic reaction is carried out as $A k B$. Draw a neat sketch showing all the model parameters and state the assumptions clearly. SECTION-C (Total Marks: 1 x 30 = 30)	20	CO2
Q 7	Develop a dynamic model for the bioreactor using the growth rate expression proposed by Monod. Draw a neat sketch showing all the model parameters and state the assumptions clearly. Using Euler method, calculate the biomass concentration (x) and the substrate concentration (S) using a step size of 1 for $0 \le t \le 7$ h for a given data. $S(0) = 1.0$, $x(0) = 1.0$. Plot concentrations <i>vs</i> . time. Data: $\mu_m = 0.53 h^{-1}$; $K_m = 0.12 g/litre$; $D = 0.3 h^{-1}$; $S_f = 4.0 g/litre$; $Y = 0.4$	30	CO2 CO3

Name: UPES			
Enroln			
	UNIVERSITY OF PETROLEUM AND ENERGY STUD	IES	
	End Semester Examination, May 2019		
0	amme Name: B. Tech (CE+RP) Semeste		
	e Name : Process Modelling and Simulation Time	: 03	
	e Code : CHEG440 Max. M f page(s) : 03	arks : 10	U
	ctions: 1) Answer the questions section wise in the answer booklet. 2) Assume suitable	le data wh	erever
necess	ary. The notations used here have the usual meanings.		
	SECTION A (Total Marks: 2 x 10 = 20)		
	Attempt <u>all</u> the questions.		
S. No.		Marks	CO
Q 1	Explain the working of a simple artificial neural network with a neat diagram.	10	CO5
Q 2	Discuss the techniques used for the process flowsheet simulation.	10	CO4
	SECTION B (Total Marks: 2 x 20 = 40)		
	 Attempt <u>any two</u> questions. 		
Q 3	Develop a mathematical model for a tubular reactor, where an irreversible reaction is		
	carried out as $A k B$ isothermally. Draw a neat sketch showing all the model	20	CO2
	parameters and state the assumptions clearly.		
Q 4	i) 20,000 kg/h of sulphuric acid having specific heat of 0.5 kcal/kg.K enters a well-agitated tank containing 20,000 kg of acid and leaves at the same	10	CO3
	rate in a steady-state process. The inlet and outlet temperatures of the acid	10	COS
	are 443 K and 363 K, respectively. This is maintained by cooling water,		
	flowing at 16,000 kg/h having a heat capacity of 4187 J/kg.K. The inlet		
	temperature of water is 298 K. (a) Calculate the outlet temperature of water. (b) If cooling water suddenly fails, what is the temperature of the		
	acid in the tank after 60 min?		
	ii) Distinguish among independent variables, dependent variables, and	10	CO1
0.5	parameters with suitable examples.		
Q 5	i) Consider the following non-linear ODE-BVP		
	$d^2 y_{1,5} dy_{2,3} = 0$		
	$\frac{d^2y}{dx^2} + 5\frac{dy}{dx} - 3y^3 = 0$		
	$x = 0: \frac{dy}{dx} = 0; x = 1: y(x = 1) = 3$	10	CO3
	$\int \frac{dx}{dx} = 0, \ x = 1, \ y(x = 1) = 3$		
	Using the finite difference method, convert the ODE-BVP problem into a set		
	of non-linear algebraic equations for 4 internal grid points.		
	ii) Consider a separation system as shown in Fig. 1. By setting up the mass		

	balances, calculate the mass flow rates of each outlet streams $(x_1, x_2 \text{ and } x_3)$ using Gauss elimination method. $\begin{array}{c} & 2F = x_1 \\ & 2w_1 = .04 \\ & 2w_2 = .93 \\ & 2w_3 = .03 \\ & 4F = x_2 \\ & 4w_1 = .54 \\ & 4w_2 = .24 \\ & 4w_3 = .22 \\ & 3w_3 = .2 \\ & 5w_1 = .26 \\ & 5w_2 = .0 \\ & 5w_3 = .74 \\ & 5F = x_3 \\ \end{array}$ Fig. 1: A Separation system SECTION-C (Total Marks: 2 x 20 = 40)	10	CO3
Q 6	 Attempt <u>all</u> the questions. Develop a dynamic model for the bioreactor using the growth rate expression proposed by Monod. Draw a neat sketch showing all the model parameters and state 	20	CO2
Q 7	the assumptions clearly.The Van de Vusse reaction operated in a continuous stirred tank reactor is given as follows: Ak_1Bk_2C Ak_1Bk_2C $$ $2Ak_3D$ $$ The component material balance equations are described as: $\frac{dC_A}{dt} = -k_1C_A - k_3C_A^2 + \frac{F}{V}(C_{Af} - C_A)$ $\frac{dC_B}{dt} = k_1C_A - k_2C_B + \frac{F}{V}C_B$ (i) Compute the steady state values of C_A and C_B using the given data.(ii) Perform three iterations employing the fourth-order Runge–Kutta method for dynamic study and plot the values of C_A and C_B as a function of time.	20	CO3

Data:	
Reactor volume $(V) = 11$	
Feed flow rate $(F) = 25 \text{ l/h}$	
Feed concentration of reactant $A(C_{Af}) = 10 \text{ mol/l}$	
Kinetic constant $(k_I) = 50 \text{ h}^{-1}$	
Kinetic constant $(k_2) = 100 \text{ h}^{-1}$	
Kinetic constant $(k_3) = 10 $ l/mol.h	