Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Programme Name: B.Tech ASE Semester: VIII
Course Name: Aircraft Design Time: 03 hrs
Course Code: ASEG461 Max. Marks: 100

Nos. of page(s) : 2

Instructions: Make use of sketches/plots to elaborate your answer. Brief and to the point answers are expected

Make use of Aircraft Data Sheet for Q10.

SECTION A

Q. No.		Marks	СО
Q 1	State the importance of Budget and time constraints in Designing of an Aircraft?	4	CO2
Q 2	Define the following terms. (a) Ramp weight (b) Take-off gross weight (c) Operational empty weight (d) landing weight	4	C01
Q 3	A customer wishes to know the effect of increase in ambient temperature by 10° C on the take-off distance of an airplane designed considering ISA conditions. Give suitable estimate considering important factors	4	C03
Q 4	What are the major constraints and standards arises from various mandatory and operational regulations.	4	C01
Q 5	How do Computer Aided Design (CAD) and Computational Fluid Dynamics CFD) reduce the design cycle time	4	C04
	SECTION B		
Q 6	The airplane in Fig. 1 is being launched from the deck of an aircraft carrier by the cable pull T which gives the airplane a forward acceleration of 3.25g. The gross weight of the airplane is 15000 lb. a) Find the tension load T in the launching cable, and the wheel reactions R ₁ and R ₂ . b) If the flying speed is 75 MPH, what launching distance is required and the launching time t? W = 15000 lb. Ra Ra R1 P0" Rig. 1	10	C02
Q 7	Briefly explain as to how aerodynamic, structural, crashworthiness, manufacturing and	10	C01,

	maintainability considerations influence the design of an airplane		CO5
Q 8	What are the salient features you consider in designing Low and High Speed Aircraft.	10	CO3
Q 9	Assume that performance calculations have been carried out for airplane under design. Plot typical variations with altitude, for the following quantities (a) Vmax (b) Vmin (c) (R/c)max (d) landing distance (e) minimum radius of turn.	t	
	Or		
	A jet airplane with a weight of 441, 450 N and wing area of 110 m 2 has a tricycle type landing gear. Its CL_{max} with flaps is 2.7. Obtain the take-off distance to 15 m screen height and the time taken for it.		
	Given that:	10	CO3
	(i) $V_1 = 1.16 V_s$ (ii) $V_2 = 1.086 V_1$ (iii) C_L during ground run is 1.15 (iv) Drag polar with landing gear and flaps deployed is $C_D = 0.044 + 0.05 \text{CL}^2$ (v) Thrust variation during take-off can be approximated as : $T = 128,500 - 0.0929 \text{V}^2$; where V is in kmph and T is in Newton		
	SECTION-C		
Q 10	Design a let Transport Airplane with a Cross Still Air Pange (CSAR) of 4000 Km and		
Q IO	Design a Jet Transport Airplane with a Gross Still Air Range (GSAR) of 4000 Km and Single class Seating capacity of 150 Passengers with a cruise Mach number of 0.80 and Altitude 11000 m.		
	Illustrate the category to which the airplanes belong.		
	Calculate the following parameters:		
	(i) Preliminary Weight Estimate (ii) Wings Parameters (iii) Empennage Parameters	40	CO4
	(iv) Control Surface Parameters (v) Fuselage Parameters		
	(vi) Engine Classfication (vii) Type of Landing Gear – with justification		
	(viii) Overall Height		