Name: Enrolment No:			
Progra Course Course Nos. of Instruct expecte	UNIVERSITY OF PETROLEUM AND ENERGY STUD End Semester Examination, May 2019	ES $\begin{aligned} & \quad: V \\ & : 03 \end{aligned}$ arks : 10 answer l choices.	
SECTION A			
S. No.		Marks	CO
Q 1	Explain the Periodic signals and Aperiodic signals	4	CO1
Q 2	Define the Region of convergence (ROC) and properties of Z Transform	4	CO2
Q 3	What is the relation between DTFT and DFT?	4	CO3
Q 4	Draw and explain the butterfly operation in DIF FFT and DIT FFT	4	CO4
Q 5	Compare IIR and FIR digital filter?	4	CO5
SECTION B			
Q 6	Calculate 8- point DFT of the following signal $\mathbf{x}(\mathbf{n})=\{\mathbf{1}, \mathbf{1}, 1,1\}$ Assume imaginary part is zero. Also calculate magnitudes and phase of $X(k)$	10	CO3
Q 7	Compute the circular convolution of given sequence $\begin{aligned} & \mathbf{X}_{1}(\mathbf{n})=\{2,1,2,1\} \\ & \mathbf{X}_{2}(\mathbf{n})=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, 4\} \end{aligned}$ Using DFT and IDFT	10	CO3
Q 8	An LTI system initially at rest is characterized by a difference equation $y(n)-a y(n-1)=x(n)$. What is the frequency response $H(\omega)$? What is the Impulse response?	10	CO1

Q 9	Define the response of the FIR filter whose unit sample response is given as $h(n)=\underset{\uparrow}{\{1,2\}}$ When input applied is, $\mathrm{x}(\mathrm{n})=\{\mathbf{2}, \mathbf{1}\}$. Use circular convolution and verify your result using linear convolution. (Or) The system function of the LTI system is given as $H(z)=\frac{3-4 z^{-1}}{1-3.5 z^{-1}+1.5 z^{-2}}$ Specify the ROC of $\mathrm{H}(\mathrm{z})$ and determine unit sample response $\mathrm{h}(\mathrm{n})$ for following condition: a) Sample system b) Causal system c) Anti-causal system	10	CO2
	SECTION-C		
Q 10	Obtain the 8-point DFT of the following sequence using Radix-2 DIF FFT Algorithms. Show the results along signal flow graph $\mathbf{x}(\mathbf{n})=\{\mathbf{2}, \mathbf{1}, \mathbf{2}, \mathbf{1}\}$ Using the signal flow graph. Verify your results using direct computation of DFT	20	CO4
Q 11	Design the symmetric FIR lowpass filter whose desired frequency is given as $\mathrm{H}_{\mathrm{d}}(\omega)=\left\{\begin{array}{rc} e^{-j \omega \tau} & \text { for }\|\omega\| \leq \omega \mathrm{c} \\ 0 & \text { otherwise } \end{array}\right.$ The length of the filter should be 7 and $\omega c=1$, radians/sample. Use rectangular windows. (Or) Design a lowpass $1 \mathrm{rad} / \mathrm{sec}$ bandwidth Chebyshev filter with the following characteristics a) Acceptable passband ripple of 2 dB b) Cutoff radians frequency of $1 \mathrm{rad} / \mathrm{sec}$ c) Stopband attenuation 20 dB or greater beyond $1.3 \mathrm{rad} / \mathrm{sec}$.	20	CO5

Name: Enrolment No:			
Progra Cours Cours Nos. of Instruct expect	UNIVERSITY OF PETROLEUM AND ENERGY STUD End Semester Examination, May 2019 The Question paper has three sections: Section A, B and C, Section B and C have intern	ES rks : 1 answer choices	
SECTION A			
S. No.		Marks	CO
Q 1	Explain the Graphical representation of time shifting and time scaling properties?	4	CO1
Q 2	Differentiate between Discreate time Fourier transform (DTFT) and Z Transform?	4	CO2
Q 3	How are discreate-time signal classified?	4	$\mathrm{CO3}$
Q 4	Design the second order bandpass Chebyshev filter with the passband of 200 Hz to 300 Hz	4	$\mathrm{CO5}$
Q 5	Define: Hamming window in FIR Filter	4	$\mathrm{CO5}$
SECTION B			
Q 6	Determine the sequence $\mathrm{x}(\mathrm{n})$ whose Z Transform is given as $\mathrm{X}(\mathrm{z})=\frac{1+2 z^{-1}+z^{-2}}{1-\frac{3}{2} Z^{-1}+\frac{1}{2} z^{-2}}, \text { ROC }:\|z\|>1$	10	CO2
Q 7	An FIR Filter has the impulse response of $\mathbf{h (n)}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}\}$. Determine the response of the filter to the input sequence $x(\mathbf{n})=\{\mathbf{1}, \mathbf{2}\}$. Use DFT and IDFT and verify using direct computation of linear convolution	10	CO1
Q 8	A difference equation of the system is given as $y(n)-y(n-1)+\frac{1}{4} y(n-2)=x(n)+\frac{1}{4} x(n-1)-\frac{1}{4} x(n-2)$ Determine the transfer function of the inverse system. Check whether the inverse system is causal and stable.	10	CO3

Q 9	Design an analog chebyshev filter with following specifications Passband ripple : 1 dB for $0 \leq \Omega \leq 10 \mathrm{rad} / \mathrm{sec}$ Stopband ripple : -60 dB for $\Omega \geq 50 \mathrm{rad} / \mathrm{sec}$ (Or) Design a high pass butterworth filter of $4^{\text {th }}$ order for the cutoff frequency of 50 Hz	10	CO5
SECTION-C			
Q 10	a) Define the response of the FIR filter whose unit sample response is given as $h(n)=\{1,2\}$ \uparrow When input applied is, $\mathrm{x}(\mathrm{n})=\{\mathbf{2}, \mathbf{1}\}$. Use circular convolution and verify your result using linear convolution. b) The system function of the LTI system is given as $H(z)=\frac{3-4 z^{-1}}{1-3.5 z^{-1}+1.5 z^{-2}}$ Specify the ROC of $H(z)$ and determine unit sample response $h(n)$ for following condition: a) Sample system b) Causal system c) Anti-causal system	$\begin{gathered} 10+10 \\ 20 \end{gathered}$	CO2
Q 11	Obtain the 8-point DFT of the following sequence using Radix-2 DIF FFT Algorithms. Show the results along signal flow graph $\mathbf{x}(\mathbf{n})=\{1,-1,-1,-1,1,1,1,-1\}$ Verify your results using direct computation of DFT (Or) Calculate the IDFT of $\mathrm{X}(\mathrm{k})=\{0,2.8284-\mathrm{j} 2.8284,0,0,0,0,0,2.8284+\mathrm{j} 2.8284\}$ Using Inverse Radix-2 DIT-FFT Algorithms	20	CO4

