Name:

Enrolment No:

Course Code

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2019

Programme Name: B. Tech ASE+AVE

Course Name : Digital signal processing

: ELEG 311

02

Semester : VI Time : 03 hrs Max. Marks : 100

Nos. of page(s) :

Instructions: Make use of *sketches/plots* to elaborate your answer. Brief and to the point answers are expected. **The Question paper has three sections: Section A, B and C, Section B and C have internal choices.**

SECTION A

S. No.		Marks	СО
Q 1	Explain the Periodic signals and Aperiodic signals	4	CO1
Q 2	Define the Region of convergence (ROC) and properties of Z Transform	4	CO2
Q 3	What is the relation between DTFT and DFT?	4	CO3
Q 4	Draw and explain the butterfly operation in DIF FFT and DIT FFT	4	CO4
Q 5	Compare IIR and FIR digital filter?	4	CO5
	SECTION B		
Q 6	Calculate 8- point DFT of the following signal x (n) = { 1 , 1 , 1 , 1 } Assume imaginary part is zero. Also calculate magnitudes and phase of X(k)	10	CO3
Q 7	Compute the circular convolution of given sequence $X_1(n) = \{ 2, 1, 2, 1 \}$ $X_2(n) = \{ 1, 2, 3, 4 \}$ Using DFT and IDFT	10	C03
Q 8	An LTI system initially at rest is characterized by a difference equation $y(n) -a y(n-1) = x(n)$. What is the frequency response $H(\omega)$? What is the Impulse response?	10	CO1

Q 9	Define the response of the FIR filter whose unit sample response is given as		
	$\mathbf{h}(\mathbf{n}) = \{ \begin{array}{c} 1, 2 \\ \uparrow \end{array} \}$		
	When input applied is, $x(n) = \{2, 1\}$. Use circular convolution and verify your result using linear convolution. (Or)	10	CO2
	The system function of the LTI system is given as		
	$H(z) = \frac{3 - 4z^{-1}}{1 - 3.5z^{-1} + 1.5z^{-2}}$		
	Specify the ROC of H(z) and determine unit sample response h(n) for following condition: a) Sample system b) Causal system c) Anti-causal system		
	SECTION-C		
Q 10	Obtain the 8-point DFT of the following sequence using Radix-2 DIF FFT Algorithms.		
Q IU	Show the results along signal flow graph		
	$\mathbf{x}(\mathbf{n}) = \{2, 1, 2, 1\}$ Using the signal flow graph. Verify your results using direct computation of DFT	20	CO4
Q 11	Design the symmetric FIR lowpass filter whose desired frequency is given as		
	$H_{d}(\omega) = \begin{cases} e^{-j\omega\tau} & \text{for } \omega \leq \omega c \\ 0 & otherwise \end{cases}$		
	The length of the filter should be 7 and $\omega c = 1$, radians/sample. Use rectangular windows.		
	(Or)	20	CO5
	Design a lowpass 1 rad/sec bandwidth Chebyshev filter with the following		
	characteristics		
	a) Acceptable passband ripple of 2 dB		
	b) Cutoff radians frequency of 1 rad/sec		
	c) Stopband attenuation 20dB or greater beyond 1.3 rad/sec.		

Name:

UPES

Enrolment No:

Course Code

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2019

Programme Name: B. Tech ASE+AVE

:

Course Name : Digital signal processing

02

ELEG 311

Semester : VI Time : 03 hrs Max. Marks : 100

Nos. of page(s) :

Instructions: Make use of *sketches/plots* to elaborate your answer. Brief and to the point answers are expected. **The Question paper has three sections: Section A, B and C, Section B and C have internal choices.**

SECTION A

S. No.		Marks	CO
Q 1	Explain the Graphical representation of time shifting and time scaling properties?	4	CO1
Q 2	Differentiate between Discreate time Fourier transform (DTFT) and Z Transform?	4	CO2
Q 3	How are discreate-time signal classified?	4	CO3
Q 4	Design the second order bandpass Chebyshev filter with the passband of 200 Hz to 300 Hz	4	CO5
Q 5	Define: Hamming window in FIR Filter	4	CO5
	SECTION B		
Q 6	Determine the sequence x(n) whose Z Transform is given as $X(z) = \frac{1+2z^{-1}+z^{-2}}{1-\frac{3}{2}z^{-1}+\frac{1}{2}z^{-2}}, \text{ ROC}: z > 1$	10	CO2
Q 7	An FIR Filter has the impulse response of $h(n) = \{1, 2, 3\}$. Determine the response of the filter to the input sequence $x(n) = \{1, 2\}$. Use DFT and IDFT and verify using direct computation of linear convolution	10	C01
Q 8	A difference equation of the system is given as $y(n) - y(n-1) + \frac{1}{4}y(n-2) = x(n) + \frac{1}{4}x(n-1) - \frac{1}{4}x(n-2)$ Determine the transfer function of the inverse system. Check whether the inverse system is causal and stable.	10	CO3

Q 9	Design an analog chebyshev filter with following specifications		
	Passband ripple : 1 dB for $0 \le \Omega \le 10$ rad/sec Stopband ripple : -60dB for $\Omega \ge 50$ rad/sec (Or) Design a high pass butterworth filter of 4 th order for the cutoff frequency of 50Hz	10	C05
	SECTION-C		
Q 10	a) Define the response of the FIR filter whose unit sample response is given as		
	$h(n) = \{ 1, 2 \}$		
	↑ (
	When input applied is, $x(n) = \{2, 1\}$. Use circular convolution and verify your result		
	using linear convolution.		
	b) The system function of the LTI system is given as	10+10	CO2
	$\mathbf{H}(\mathbf{z}) = \frac{3 - 4z^{-1}}{1 - 3.5z^{-1} + 1.5z^{-2}}$	20	
	Specify the ROC of H(z) and determine unit sample response h(n) for following		
	condition:		
	a) Sample system		
	b) Causal system		
	c) Anti-causal system		
Q 11	Obtain the 8-point DFT of the following sequence using Radix-2 DIF FFT Algorithms.		
	Show the results along signal flow graph		
	$\mathbf{x}(\mathbf{n}) = \{ \ 1, -1, -1, 1, 1, 1, -1 \}$		
	Verify your results using direct computation of DFT		
	(Or)	20	CO4
	Calculate the IDFT of $X(k) = \{0, 2.8284 - j2.8284, 0, 0, 0, 0, 0, 2.8284 + j2.8284\}$		
	Using Inverse Radix-2 DIT-FFT Algorithms		