Enrolment No

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Programme Name: B. Tech. ASE **Course Name** : Design of Machine Element Max. Marks: 100 : MECH 3001 **Course Code**

Semester: IV Time: 03 hrs

Nos. of page(s) : 3

Instructions: Read the questions carefully and attempt as per section. Use of Design Data handbook is allowed. Assume suitable data if required. SECTION A (30)

Atte	mpt all questions.		
S. No.	Statement of Problem	Marks	CO
Q 1	 (i) Explain fatigue strength. Also draw the S-N (Stress Vs Speed) curve for ferrous & non- ferrous materials (ii) Explain stress concentration factor. Explain the methods employed to reduce the stress concentration in machine elements with help of suitable 	5	CO1
	examples.	5	
Q 2	(i) Shaft is generally made with either plain carbon or alloy steel. Justify the statement with any two important characteristics of selected materials.(ii) In a design problem it is necessary to replace a 2m long aluminum shaft of	5	CO1
	(i) If a design problem it is necessary to replace a 21n rong autimutin shart of 100mm diameter by a tubular steel shaft of the same outside diameter transmitting the same torque and having the same angle of twist. Find the inner radius of the steel bar if $G_{Al} = 28$ GPa and $G_{St} = 84$ GPa.		
		5	CO1
Q 3	(i) Classify the gears on following criteria;(a) Axes of shaft(b) Speed ratio	5	CO3
	Support the answer with suitable diagrams and mention least mention one application area in (a) & (b).		
	(ii)Explain the SKF bearing designation with an example.	5	CO4
• • • •	SECTION B (45)		
	mpt all questions. There is internal choice in Q. No.6.	15	<u> </u>
Q 4	Design a longitudinal riveted joint for boiler shell the following data; Diameter of boiler shell = 1.35 m Maximum internal pressure = 2.5 N/mm ²	15	CO3
	Strength of plate in tension = 84 MPa Crushing strength of plate = 130 MPa Shearing strength of rivet = 70 MPa		
	Assume the relevant data from DDHB.		

0.5	Design the flange coupling for following data ;		
Q 5	Power to be transmitted = 30 kW		
	Speed of shaft $= 200 \text{ rpm}$		
	Allowable stresses may be considered as mentioned below;		
	Bolt material (shearing strength) = 100 MPa	15	CO4
	Shaft & Key material (shearing strength) = 55 MPa. The flanges are made with CI for which shear stresses are 24 N/mm ² .		
	Also draw the sectional elevation and outside view of designed coupling.		
Q 6	A journal bearing is proposed for a centrifugal pump application. Diameter of journal		
	is 0.15 m and load on it is 35 kN and its speed is 900 rom. Complete the design		
	calculation for bearing. Mention clearly the data assumed in solution; lubricating oil,		
	bearing characteristic numbers etc. Use the following Viscosity diagram for selecting the lubricating oil for journal		
	bearing design at operating temperature.	15	CO2/CO4
	5000		
	2000		
	1000		
	5 50 $ -$		
	Absolute viscosity (cP) or (10 ⁻⁹) (N-sec/mm ²) 10 10 10 10 10 10 10 10 10 10		
	Temperature °C		
	OR		
	Design the deep groove ball bearing for the following data ; Radial force $=$ 5000 N		
	Axial force $= 6000 \text{ N}$		
	Speed =1600 rpm	15	CO2/CO4
	Desired Life $= 5$ Yrs at 10 hrs per day	13	
	Assume the uniform and steady load .Suggest the shaft dia for which designed		
	bearing can be used.		1

SECTION-C (25)											
There is internal choice in Q. No. 7											
Q 7	A compressor run										
	$\frac{1}{2}$ ⁰ full depth gears. The Centre distance is 0.375 m. The pinion is to be made of C30										
	forged steel hardened and tempered. The gear is to be made of cast steel. Assuming										
	medium shock co										
	(a) Deter	ch gear									
	(b) Check the drive for wear										
	Properties of ma										
	below;										
	Material	Allowable	Endurance	BHN	Modulus of						
		static design	strength		Elasticity						
		stress					25	CO2/CO4			
	C30 forged	224 MPa	300 MPa	250	210 GPa						
	steel hardened										
	and tempered				_	-					
	Cast steel	140 MPa	225 MPa OR	160	210 GPa						
	A pair of paralle	00 rpm and									
	A pair of parallel helical gear consists of 24 teeth pinion rotating at 5000 rpm and supplying 2.5 kW power to a gear. The speed reduction is 4:1. The normal pressure										
	angle is 20° . Both	-									
	data and design th										
	data and design ti				ing the dynamic	ioaunig.					