Name:			
Enrolment No:			
	UNIVERSITY OF PETROLEUM AND ENERGY STUD	IES	
	End Semester Examination, May 2019		
Progra	Imme Name: B. Tech. CERP and APE (Gas) Semester	: IV	
Course	e Name : Heat Transfer Time	: 03 hrs	
Course	e Code : CHCE 2009 Max. Mar	ks : 100	
	f page(s) : 04		
Instrue The gu	ctions: estion paper consists of three sections. Answer the questions section wise in the answer b	ooklat	
	suitable data wherever necessary. The notations used here have the usual meanings.	OOKICI.	
Assume	$\frac{1}{10 \times 2} = 20 \text{ Marks}$		
S.			
No.		Marks	CO
1.	The outside of a copper wire having a diameter of 2 mm is exposed to a convection		
	environment with $h = 5000 \text{ W/m}^2-^{\circ}\text{C}$ and $T_{\infty} = 100 ^{\circ}\text{C}$. What current must be passed	d 10	
	through the wire to produce a center temperature of 150 °C? The resistivity of copper is		CO1
	$1.67 \mu\Omega$ -cm.		
2.	Derive the relationship for the temperature profile of a steady state laminar flow of an	10	CO3
	incompressible fluid in the fully developed region of a tube having constant heat flux.	10	0.05
	SECTION B $(12 \times 5 = 60 \text{ Marks})$	1	
3.(a)	Define Kirchoff's law and Wien's displacement law.		
(b)	Three hollow cylinders of thin wall 10cm, 20cm and 30cm in diameter are arranged		
	concentrically. The temperature of the surface of the 10 cm diameter cylinder and		
	20cm diameter cylinder are maintained at -173 °C and 27 °C, respectively. Assuming	2+10	CO1
	the vacuum between the annular spaces, find the steady state temperature attained by	2710	COI
	the surface of the cylinder whose diameter is 20 cm. Take $\varepsilon_1 = \varepsilon_2 = \varepsilon_3 = 0.05$. Also, find		
	the heat loss per meter length of the composite cylinder and the convective heat		
	transfer coefficient, if the surrounding air temperature is 10 °C.		
4.	Consider a 2-ft \times 2-ft thin square plate in a room at 75 °F. One side of the plate is	12	CO3
	maintained at a temperature of 130 °F, while the other side is insulated. Determine the		
	rate of heat transfer from the plate by natural convection if the plate is		

	(a) vertical,		
	(b) horizontal with hot surface facing up, and		
	(c) horizontal with hot surface facing down.		
	The properties of air at 1 atm and the film temperature of 102.5 $^{\circ}$ F are:		
	$k = 0.01535$ Btu/ft-h- ⁰ F, $v = 0.1823 \times 10^{-3}$ ft ² /s, Pr = 0.7256		
	Relation of Nusselt Number for vertical surface:		
	$Nu = \left\{ 0.825 + \frac{0.387 Ra^{1/6}}{\left[1 + \left(\frac{0.492}{Pr} \right)^{9/16} \right]^{8/27}} \right\}^2$		
	Relation of Nusselt Number for hot surface facing up:		
	$Nu = 0.59 Ra^{1/4}$		
	Relation of Nusselt Number for hot surface facing down:		
	$Nu = 0.27 Ra^{1/4}$		
5.(a)	What is condensation? What are the types of condensation and which is a more		
	effective mechanism of heat transfer?		
(b)	A 40 cm \times 40 cm plate is inclined at an angle of 30° with the vertical and exposed to		
	water vapor at 1 atm. The plate is maintained at 98 °C. Calculate the heat-transfer and	4+8	CO4
	mass-flow rate of condensate. The properties of the condensate at 99 $^{\circ}$ C are: $\rho = 960$		
	kg/m ³ , k =0.68 W/m-K, μ = 282 ×10 ⁻⁶ kg/m-s and latent heat of vaporization at 100 ^o C		
	is 2255 kJ/kg.		
6.	A counter flow heat exchanger consists of a bundle of 20 mm diameter tubes contained		
	in a shell. Oil flowing in the tubes is cooled by water flowing in the shell. The total		
	flow area with in the tubes is 4.4×10^{-3} m ² . The flow rate of oil is 2.5 kg/s. It enters at		
	$65 {}^{\circ}\text{C}$ and leaves at 48 ${}^{\circ}\text{C}$. Water enters the shell at the rate of 20 kg/sec and at 15 ${}^{\circ}\text{C}$.		
	Calculate the heat transfer area and effectiveness of the exchanger.	12	CO5
	For oil in the tubes, the properties are:		
	$\rho = 880 \text{ kg/m}^3$, $\mu = 2.2 \text{ x } 10^{-5} \text{ Pa.s}$, $C_p = 2.15 \text{ kJ/kg-K}$, $k = 190 \times 10^{-6} \text{ kW/m-K}$		
	For water,		
	$C_p = 4.19 \text{ kJ/kg-K}$, $h = 1.2 \text{ kW/m^2-K}$.		0.0-
7.	Calculate the amount of steam required for concentrating the solution of caustic soda	12	CO5
	from 28% W of solids to 40% W of solids in a single effect evaporator. The feed rate		
	is 25000 kg/hr and its temperature is 60 °C. The absolute pressure in the evaporator is		

	0.2 kg/cm ² (Boiling point 60 °C). Saturated steam at 1.4 kg/cm ² (108.7 °C) is to be used		
	as heating medium. The elevation in boiling point is 25 °C. If the overall heat transfer		
	coefficient is 670 kcal/h-m ² - ⁰ C, calculate the heating surface required. The enthalpy		
	data for various streams are as follows:		
	Vapor at 0.2 kg/ cm ² =623 kcal/kg		
	28% NaOH at 60° C =50 kcal/kg		
	40% NaOH at 85 °C= 90 kcal/kg		
	Latent heat of steam at $1.4 \text{ kg/cm}^2 = 534 \text{ kcal/kg}$.		
	SECTION - C (20 × 1 = 20 Marks)		
8.(a)	Derive a relationship for the LMTD (log mean temperature difference) between the		
	two fluids considering the counter-flow configuration in a double pipe heat exchanger.	10	CO5
	List the assumptions, also.		
(b)	Water is heated from 15 0 C to 65 0 C as it flows through a 3 cm internal diameter and 5		
	m long tube. The tube is equipped with an electric resistance heater, which provides		
	uniform heating throughout the surface of the tube. The outer surface of the heater is		
	perfectly insulated so that the whole generated heat is given to the water in the tube.	10	CO3
	The water flow rate is 10 litre/minute. Determine the power rating of the heater. Also,		
	find the inner surface temperature of the pipe at the exit. Take the following properties		
	of air at mean film temperature of 40 °C:		
	$\rho = 994 \text{ kg/m}^3$, k = 0.62860 W/m-K, C _p = 4.178 kJ/kg-K, $\upsilon = 0.66 \times 10^{-6} \text{ m}^2/\text{s}$		
	OR		
8.(a)	Air at 207 kPa and 200 °C enters a 2.5 cm inside diameter tube at 6 m/s. The tube is		
	constructed of copper with a thickness of 0.8 mm and a length of 3 m. Atmospheric air		
	at 1 atm and 20 °C flows normal to the outside of the tube with a free-stream velocity	10	CO5
	of 12 m/s. Calculate the air temperature at exit from the tube. What would be the effect		
	of reducing the hot air flow in half?		
	The properties of air at mean bulk temperature are:		
	$\mu = 2.58 \times 10^{-5} \text{ kg/m-s}, \rho = 1.525 \text{ kg/m}^3, \text{ k}=0.0385 \text{ W/m-K} \text{ and } C_p = 1.03 \text{ kJ/kg-K}.$		
	The properties of air at mean film temperature are:		
	$\upsilon = 25.15 \times 10^{-6} \text{ m}^2/\text{s}$, k=0.0324 W/m-K and Pr =0.69.		
	Nusselt Number for flow outside the tube is given by:		

	$Nu=0.193 \Re^{0.618} Pr^{\frac{1}{3}}$		
(b)	A 3 m internal diameter spherical tank made of 1 cm thick stainless steel ($k = 15$ W/m-		
	^o C) is used to store iced water at 0 ^o C. The tank is located outdoors at 30 ^o C and is		
	subjected to winds at 25 km/h. Assuming the entire steel tank to be at 0 °C and thus its		
	thermal resistance to be negligible, determine	10	600
	(a) the rate of heat transfer to the iced water in the tank and	10	CO3
	(b) the amount of ice at 0 $^{\circ}$ C that melts during a 24 h period.		
	The heat of fusion of water at atmospheric pressure is $h_{fg} = 333.7 \text{ kJ/kg}$. Disregard any		
	heat transfer by radiation. The properties of air at 30 °C and 1 atm pressure are:		
	k = 0.02588 W/m-K, υ = 1.608 × 10 ⁻⁵ m ² /s, μ_{∞} = 1.872 × 10 ⁻⁵ kg/m-s, Pr = 0.7282		
	The dynamic viscosity of air at 0 $^{\circ}$ C is 1.729 × 10 ⁻⁵ kg/m-s.		
	The Nusselt Number is given by:		
	$Nu = 2 + [0.4 \Re^{0.5} + 0.06 \Re^{2/3}] Pr^{0.4} \left(\frac{\mu_{\infty}}{\mu_{s}}\right)^{1/4}$		

Name: Enrolment No:			
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES		
	End Semester Examination, May 2019		
Progra	amme Name: B. Tech. CERP and APE (Gas) Semester :	IV	
Course	e Name : Heat Transfer Time :	03 hrs	
Course	e Code : CHCE 2009 Max. Marks :	100	
Nos. of	f page(s) : 03		
Instru			
The qu	estion paper consists of three sections. Answer the questions section wise in the answer bookl	et.	
Assume	suitable data wherever necessary. The notations used here have the usual meanings.		
	SECTION A $(10 \times 2 = 20 \text{ Marks})$		
S.		Ma	CO
No.		rks	CO
1.	A long solid cylinder rod of 10 cm radius is made of a material (k=1 W/m.K) generating		
	24×10^3 W/m ³ uniformly throughout its volume. This rod is tightly encapsulated within a		
	long hollow cylinder (k=14 W/m.K), whose inner radius is 10 cm and outer radius is 20		
	cm. The outer surface is surrounded by a fluid at 200°C and the convective heat transfer	10	CO1
	coefficient between the surface and the fluid is 120 W/m ² .K. What is the temperature at the		
	outer surface of the outer cylinder and the temperature at the interface between the two		
- ()	cylinders?		
2.(a)	How is natural convection different from forced convection?	2	
(b)	In which mode of heat transfer will the convection heat-transfer coefficient usually be	2	
	higher, and why?		
(c)	Enumerate some examples of free convection flow?	2	CO3
(d)	What does the Grashof number represent and how is it different from the Reynolds	2	
(e)	number?	2	
	Define Hydraulic diameter? What is it equal to for a circular tube of diameter D?		
2 ()	SECTION B ($12 \times 5 = 60$ Marks)		~~~
3.(a)	Define Planck's Law.	2+1	CO1
(b)	Two long concentric cylinders have diameters of 4 and 8 cm, respectively. The inside	0	
	cylinder is at 800 °C and the outer cylinder is at 100 °C. The inside and outside emissivities		
	are 0.8 and 0.4, respectively. Calculate the percent reduction in heat transfer if a cylindrical		
	radiation shield having a diameter of 6 cm and emissivity of 0.3 is placed between the two		

	cylinders.		
4.	A 1.5 m diameter, 5 m long cylindrical propane tank is initially filled with liquid propane, whose density is 581 kg/m ³ . The tank is exposed to the ambient air at 25°C in calm weather. The outer surface of the tank is polished so that the radiation heat transfer is negligible. Now a crack develops at the top of the tank, and the pressure inside drops to 1 atm while the temperature drops to -42 °C, which is the boiling temperature of propane at 1 atm. The heat of vaporization of propane at 1 atm is 425 kJ/kg. The propane is slowly vaporized as a result of the heat transfer from the ambient air into the tank, and the propane vapor escapes the tank at -42°C through the crack. Assuming the propane tank to be at about the same temperature as the propane inside at all times, determine how long it will take for the tank to empty if it is not insulated. The properties of air are: $k = 0.02401$ W/m-K, $v = 1.382 \times 10^{-5}$ m ² /s, Pr = 0.7350	12	CO3
	Relation of Nusselt Number is given by: $Nu = \left\{ 0.6 + \frac{0.387 Ra^{1/6}}{\left[1 + \left(\frac{0.599}{Pr} \right)^{9/16} \right]^{8/27}} \right\}^2$		
5.(a)	Explain the effect of presence of non-condensables on rate of condensation of condensable		
(b)	vapors? Saturated air-free steam at 85 $^{\circ}$ C condenses on the outer surface of 225 horizontal tubes of 12.7 mm outer diameter arranged in a 15 × 15 array. Tube surfaces are maintained at 75 $^{\circ}$ C. Calculate the total condensation per metre length of the tube bundle. Properties of air	4+8	CO4
6.	are: $\rho = 971.8 \text{ kg/m}^3$, $\mu = 360.7 \times 10^{-6} \text{ kg/m-s}$, $h_{fg} = 2257 \text{ kJ/kg}$, $k = 0.67 \text{ W/m-K}$. Hot water at 90 °C flows on the inside of a 2.5 cm ID steel tube with 0.8 mm wall		
0.	Hot water at 90 °C hows on the inside of a 2.5 cm 1D steer tube with 0.8 min want thickness at a velocity of 4 m/s. This tube forms the inside of a double-pipe heat exchanger. The outer pipe has a 3.75 cm ID, and engine oil at 20 °C flows in the annular space at a velocity of 7 m/s. Calculate the overall heat-transfer coefficient for this arrangement. The tube length is 6.0 m. For water at 90 °C: ρ =965 kg/m ³ , μ =3.16 ×10 ⁻⁶ kg/m-s, k = 0.676 W/m-K, Pr = 1.96 For Engine oil: $\nu = 0.0009 \text{ m}^2/\text{s}$, k = 0.145 W/m-K, Pr = 10400, $\nu_w = 0.289 \times 10^{-4} \text{ m}^2/\text{s}$, and Nusselt Number is given by $Nu_d = 1.86 (\Re_d Pr)^{1/3} (\frac{d}{l})^{1/3} (\frac{\mu}{\mu_w})^{1/3}$	12	CO5
7.	A single effect vertical short tube evaporator is used to concentrate a syrup from 10% to	12	CO5
	40% solids at the rate of 2000 kg of feed per hour. The feed enters at 30 °C and a reduced		
	pressure of 0.33 kg/cm ² is maintained in the vapour space. At this pressure, the liquor boils		

			
	at 75°C. Saturated steam at 115°C is supplied to the steam chest. No sub cooling of the		
	condensate occurs. Calculate the steam requirement and the number of tubes if the height		
	of the calandria is 1.5 m. Specific heat of liquor =0.946 kcal/kg °C. Latent heat of steam at		
	$0.33 \text{ kg/cm}^2 = 556.5 \text{ kcal/kg}$, boiling point of water at this pressure=345 K. the overall heat		
	transfer coefficient =2150 kcal/ h m ² °C.		
	SECTION - C (20 × 1 = 20 Marks)		
8.(a)	Discuss the common causes of fouling in a heat exchanger. How does fouling affect its		
	performance? What is the effect of fluid velocity and temperature on fouling?	10	CO5
	Blood at 32°C enters a 2.5 mm inside diameter steel tube with a volumetric flow rate of 15		
(b)	mL/s. The tube surface is electrically heated to impart a uniform heat flux. The tube wall		
	temperature must not exceed 44°C to avoid damage to the blood. Calculate the minimum		
	length of the tube required to warm the blood to 37°C. Blood properties may be		
	approximated as those of water. Properties of water at the bulk mean temperature of 34.5°C	10	CO3
	are	10	000
	$\rho = 994.0 \text{ kg/m}^3$, $\mu = 7.32 \times 10^{-4} \text{ N-s/m}^2$, $k = 0.624 \text{ W/m-K}$, $Pr = 4.91$, $C_p = 4.178 \text{ kJ/kg-K}$		
	$p = 994.0 \text{ kg/m}$, $\mu = 7.52 \times 10^{-1} \text{ N-S/m}$, $\kappa = 0.024 \text{ W/m-K}$, $r_1 = 4.91$, $C_p = 4.178 \text{ kJ/kg-K}$ OR		
8.(a)	A single pass steam condenser contains 100 thin walled tubes of 25 mm nominal diameter		
()	and 2 m length. Cooling water enters at a temperature of 10°C leaves at 50°C and flows		
	through the tubes at a velocity of 2 m/s. The condenser pressure is 0.5 bar and the heat	10	CO5
	transfer coefficient is $5000 \text{ W/m}^2 \text{ K}$. Determine the condensate flow rate.	10	000
	The following properties of water are used:		
	$\rho = 995.8 \text{ kg/m}^3, \mu = 801 \times 10^{-6} \text{ kg/m.s}, C_p = 4.178 \text{ kJ/kg K}, k = 0.617 \text{ W/m K}$		
	$p = -993.8 \text{ kg/m}$, $\mu = -801 \times 10^{-10} \text{ kg/m}$, $C_p = 4.178 \text{ kJ/kg K}$, $k = 0.017 \text{ W/m}$		
(b)	The betweter people of a boundhold are to be motify besting water at $EE^{\circ}E$ to		
	The hot water needs of a household are to be met by heating water at 55°F to		
	200°F by a parabolic solar collector at a rate of 4 lbm/s. Water flows through a		
	1.25-indiameter thin aluminium tube whose outer surface is black anodized in		
	order to maximize its solar absorption ability. The centerline of the tube coincides		
	with the focal line of the collector, and a glass sleeve is placed outside the tube to		
	minimize the heat losses. If solar energy is transferred to water at a net rate of 350		
	Btu/h per ft length of the tube, estimate the required length of the parabolic		
	collector to meet the hot water requirements of this house. Also, determine the		
	surface temperature of the tube at the exit.		
	The properties of water at the average temperature of 127.5°C are:		002
	$\rho = 61.59 \ lb_m/ft^3$, $\upsilon = 0.5683 \times 10^{-5} \ ft^2/s$, $C_p = 0.999 \ Btu/lbm \ ^oF$, k=0.374 Btu/ft oF ,	10	CO3
	Pr=3.368.		