Name: Enrolment No:			
Prog Cour Cour Nos. Instr The Assum	UNIVERSITY OF PETROLEUM AND ENERGY STUDI End Semester Examination, May 2019	S $\begin{aligned} : & \text { IV } \\ : & 03 \mathrm{hr} \\ \mathrm{~s} & : 100 \end{aligned}$ oklet.	
SECTION A (10 $\times 2=20$ Marks)			
S. No.		Marks	CO
1.	The outside of a copper wire having a diameter of 2 mm is exposed to a convection environment with $h=5000 \mathrm{~W} / \mathrm{m}^{2}-^{\circ} \mathrm{C}$ and $T_{\infty}=100{ }^{\circ} \mathrm{C}$. What current must be passed through the wire to produce a center temperature of $150^{\circ} \mathrm{C}$? The resistivity of copper is $1.67 \mu \Omega-\mathrm{cm}$.	10	CO1
2.	Derive the relationship for the temperature profile of a steady state laminar flow of an incompressible fluid in the fully developed region of a tube having constant heat flux.	10	CO3
SECTION B (12 $\times 5=60 \mathrm{Marks}$)			
3.(a) (b)	Define Kirchoff's law and Wien's displacement law. Three hollow cylinders of thin wall $10 \mathrm{~cm}, 20 \mathrm{~cm}$ and 30 cm in diameter are arranged concentrically. The temperature of the surface of the 10 cm diameter cylinder and 20 cm diameter cylinder are maintained at $-173{ }^{\circ} \mathrm{C}$ and $27^{\circ} \mathrm{C}$, respectively. Assuming the vacuum between the annular spaces, find the steady state temperature attained by the surface of the cylinder whose diameter is 20 cm . Take $\varepsilon_{1}=\varepsilon_{2}=\varepsilon_{3}=0.05$. Also, find the heat loss per meter length of the composite cylinder and the convective heat transfer coefficient, if the surrounding air temperature is $10^{\circ} \mathrm{C}$.	2+10	CO1
4.	Consider a $2-\mathrm{ft} \times 2-\mathrm{ft}$ thin square plate in a room at $75^{\circ} \mathrm{F}$. One side of the plate is maintained at a temperature of $130^{\circ} \mathrm{F}$, while the other side is insulated. Determine the rate of heat transfer from the plate by natural convection if the plate is	12	CO3

	(a) vertical, (b) horizontal with hot surface facing up, and (c) horizontal with hot surface facing down. The properties of air at 1 atm and the film temperature of $102.5^{\circ} \mathrm{F}$ are: $\mathrm{k}=0.01535 \mathrm{Btu} / \mathrm{ft}-\mathrm{h}-{ }^{0} \mathrm{~F}, \mathrm{v}=0.1823 \times 10^{-3} \mathrm{ft}^{2} / \mathrm{s}, \operatorname{Pr}=0.7256$ Relation of Nusselt Number for vertical surface: $N u=\left\{0.825+\frac{0.387 R a^{1 / 6}}{\left[1+\left(\frac{0.492}{P r}\right)^{9 / 16}\right]^{8 / 27}}\right\}^{2}$ Relation of Nusselt Number for hot surface facing up: $N u=0.59 R a^{1 / 4}$ Relation of Nusselt Number for hot surface facing down: $N u=0.27 R a^{1 / 4}$		
5.(a) (b)	What is condensation? What are the types of condensation and which is a more effective mechanism of heat transfer? A $40 \mathrm{~cm} \times 40 \mathrm{~cm}$ plate is inclined at an angle of 30° with the vertical and exposed to water vapor at 1 atm . The plate is maintained at $98{ }^{\circ} \mathrm{C}$. Calculate the heat-transfer and mass-flow rate of condensate. The properties of the condensate at $99{ }^{\circ} \mathrm{C}$ are: $\rho=960$ $\mathrm{kg} / \mathrm{m}^{3}, \mathrm{k}=0.68 \mathrm{~W} / \mathrm{m}-\mathrm{K}, \mu=282 \times 10^{-6} \mathrm{~kg} / \mathrm{m}-\mathrm{s}$ and latent heat of vaporization at $100{ }^{\circ} \mathrm{C}$ is $2255 \mathrm{~kJ} / \mathrm{kg}$.	4+8	CO4
6.	A counter flow heat exchanger consists of a bundle of 20 mm diameter tubes contained in a shell. Oil flowing in the tubes is cooled by water flowing in the shell. The total flow area with in the tubes is $4.4 \times 10^{-3} \mathrm{~m}^{2}$. The flow rate of oil is $2.5 \mathrm{~kg} / \mathrm{s}$. It enters at $65{ }^{\circ} \mathrm{C}$ and leaves at $48{ }^{\circ} \mathrm{C}$. Water enters the shell at the rate of $20 \mathrm{~kg} / \mathrm{sec}$ and at $15^{\circ} \mathrm{C}$. Calculate the heat transfer area and effectiveness of the exchanger. For oil in the tubes, the properties are: $\rho=880 \mathrm{~kg} / \mathrm{m}^{3}, \mu=2.2 \times 10^{-5} \text { Pa.s, } \mathrm{C}_{\mathrm{p}}=2.15 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}, \mathrm{k}=190 \times 10^{-6} \mathrm{~kW} / \mathrm{m}-\mathrm{K}$ For water, $\mathrm{C}_{\mathrm{p}}=4.19 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}, \mathrm{~h}=1.2 \mathrm{~kW} / \mathrm{m}^{2}-\mathrm{K}$	12	CO5
7.	Calculate the amount of steam required for concentrating the solution of caustic soda from $28 \% \mathrm{~W}$ of solids to $40 \% \mathrm{~W}$ of solids in a single effect evaporator. The feed rate is $25000 \mathrm{~kg} / \mathrm{hr}$ and its temperature is $60{ }^{\circ} \mathrm{C}$. The absolute pressure in the evaporator is	12	CO5

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
\(0.2 \mathrm{~kg} / \mathrm{cm}^{2}\) (Boiling point \(60^{\circ} \mathrm{C}\)). Saturated steam at \(1.4 \mathrm{~kg} / \mathrm{cm}^{2}\left(108.7^{\circ} \mathrm{C}\right)\) is to be used as heating medium. The elevation in boiling point is \(25^{\circ} \mathrm{C}\). If the overall heat transfer coefficient is \(670 \mathrm{kcal} / \mathrm{h}-\mathrm{m}^{2}-{ }^{0} \mathrm{C}\), calculate the heating surface required. The enthalpy data for various streams are as follows: \\
Vapor at \(0.2 \mathrm{~kg} / \mathrm{cm}^{2}=623 \mathrm{kcal} / \mathrm{kg}\) \\
\(28 \% \mathrm{NaOH}\) at \(60^{\circ} \mathrm{C}=50 \mathrm{kcal} / \mathrm{kg}\) \\
\(40 \% \mathrm{NaOH}\) at \(85^{\circ} \mathrm{C}=90 \mathrm{kcal} / \mathrm{kg}\) \\
Latent heat of steam at \(1.4 \mathrm{~kg} / \mathrm{cm}^{2}=534 \mathrm{kcal} / \mathrm{kg}\).
\end{tabular} \& \& \\
\hline \multicolumn{4}{|c|}{SECTION - C (20 \(\times 1=20\) Marks)} \\
\hline 8.(a)

(b) \& | Derive a relationship for the LMTD (log mean temperature difference) between the two fluids considering the counter-flow configuration in a double pipe heat exchanger. |
| :--- |
| List the assumptions, also. |
| Water is heated from $15^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ as it flows through a 3 cm internal diameter and 5 m long tube. The tube is equipped with an electric resistance heater, which provides uniform heating throughout the surface of the tube. The outer surface of the heater is perfectly insulated so that the whole generated heat is given to the water in the tube. The water flow rate is 10 litre/minute. Determine the power rating of the heater. Also, find the inner surface temperature of the pipe at the exit. Take the following properties of air at mean film temperature of $40^{\circ} \mathrm{C}$: $\rho=994 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{k}=0.62860 \mathrm{~W} / \mathrm{m}-\mathrm{K}, \mathrm{C}_{\mathrm{p}}=4.178 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}, \mathrm{v}=0.66 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$ | \& 10 \& \[

\mathrm{CO5}
\]

CO3 \\
\hline \multicolumn{4}{|c|}{OR} \\

\hline 8.(a) \& | Air at 207 kPa and $200{ }^{\circ} \mathrm{C}$ enters a 2.5 cm inside diameter tube at $6 \mathrm{~m} / \mathrm{s}$. The tube is constructed of copper with a thickness of 0.8 mm and a length of 3 m . Atmospheric air at 1 atm and $20^{\circ} \mathrm{C}$ flows normal to the outside of the tube with a free-stream velocity of $12 \mathrm{~m} / \mathrm{s}$. Calculate the air temperature at exit from the tube. What would be the effect of reducing the hot air flow in half? |
| :--- |
| The properties of air at mean bulk temperature are: $\mu=2.58 \times 10^{-5} \mathrm{~kg} / \mathrm{m}-\mathrm{s}, \rho=1.525 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{k}=0.0385 \mathrm{~W} / \mathrm{m}-\mathrm{K} \text { and } \mathrm{C}_{\mathrm{p}}=1.03 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K} .$ |
| The properties of air at mean film temperature are: $v=25.15 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}, \mathrm{k}=0.0324 \mathrm{~W} / \mathrm{m}-\mathrm{K} \text { and } \operatorname{Pr}=0.69 .$ |
| Nusselt Number for flow outside the tube is given by: | \& 10 \& $\mathrm{CO5}$ \\

\hline
\end{tabular}

(b)	$N u=0.193 \mathfrak{R}^{0.618} P r^{\frac{1}{3}}$		
	A 3 m internal diameter spherical tank made of 1 cm thick stainless steel $(\mathrm{k}=15 \mathrm{~W} / \mathrm{m}-$ ${ }^{0} \mathrm{C}$) is used to store iced water at $0{ }^{\circ} \mathrm{C}$. The tank is located outdoors at $30{ }^{\circ} \mathrm{C}$ and is subjected to winds at $25 \mathrm{~km} / \mathrm{h}$. Assuming the entire steel tank to be at $0{ }^{\circ} \mathrm{C}$ and thus its thermal resistance to be negligible, determine (a) the rate of heat transfer to the iced water in the tank and (b) the amount of ice at $0{ }^{\circ} \mathrm{C}$ that melts during a 24 h period. The heat of fusion of water at atmospheric pressure is $\mathrm{h}_{\mathrm{fg}}=333.7 \mathrm{~kJ} / \mathrm{kg}$. Disregard any heat transfer by radiation. The properties of air at $30^{\circ} \mathrm{C}$ and 1 atm pressure are: $\mathrm{k}=0.02588 \mathrm{~W} / \mathrm{m}-\mathrm{K}, \mathrm{v}=1.608 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}, \mu_{\infty}=1.872 \times 10^{-5} \mathrm{~kg} / \mathrm{m}-\mathrm{s}, \operatorname{Pr}=0.7282$ The dynamic viscosity of air at $0^{\circ} \mathrm{C}$ is $1.729 \times 10^{-5} \mathrm{~kg} / \mathrm{m}-\mathrm{s}$. The Nusselt Number is given by: $N u=2+\left[0.4 \mathfrak{R}^{0.5}+0.06 \mathfrak{R}^{2 / 3}\right] \operatorname{Pr}^{0.4}\left(\frac{\mu_{\infty}}{\mu_{s}}\right)^{1 / 4}$	10	CO3

Name: Enrolment No:			
Programme Name: B. Tech. CERP and APE (Gas) Semester $:$ IV Course Name $:$ Heat Transfer Time $: 03 ~ h r s ~$ Course Code $:$ CHCE 2009 Max. Marks : $\mathbf{1 0 0}$ Nos. of page(s) $:$ $\mathbf{0 3}$ Instructions: The question paper consists of three sections. Answer the questions section wise in the answer booklet. Assume suitable data wherever necessary. The notations used here have the usual meanings.			
SECTION A (10 $\times 2=\mathbf{2 0}$ Marks)			
S. No.		Ma	CO
1.	A long solid cylinder rod of 10 cm radius is made of a material ($\mathrm{k}=1 \mathrm{~W} / \mathrm{m} . \mathrm{K}$) generating $24 \times 10^{3} \mathrm{~W} / \mathrm{m}^{3}$ uniformly throughout its volume. This rod is tightly encapsulated within a long hollow cylinder ($k=14 \mathrm{~W} / \mathrm{m} . \mathrm{K}$), whose inner radius is 10 cm and outer radius is 20 cm . The outer surface is surrounded by a fluid at $200^{\circ} \mathrm{C}$ and the convective heat transfer coefficient between the surface and the fluid is $120 \mathrm{~W} / \mathrm{m}^{2} . \mathrm{K}$. What is the temperature at the outer surface of the outer cylinder and the temperature at the interface between the two cylinders?	10	CO1
2.(a) (b) (c) (d) (e)	How is natural convection different from forced convection? In which mode of heat transfer will the convection heat-transfer coefficient usually be higher, and why? Enumerate some examples of free convection flow? What does the Grashof number represent and how is it different from the Reynolds number? Define Hydraulic diameter? What is it equal to for a circular tube of diameter D?	2 2 2 2 2	CO3
SECTION B (12 $\times 5=60$ Marks)			
3.(a) (b)	Define Planck's Law. Two long concentric cylinders have diameters of 4 and 8 cm , respectively. The inside cylinder is at $800^{\circ} \mathrm{C}$ and the outer cylinder is at $100^{\circ} \mathrm{C}$. The inside and outside emissivities are 0.8 and 0.4 , respectively. Calculate the percent reduction in heat transfer if a cylindrical radiation shield having a diameter of 6 cm and emissivity of 0.3 is placed between the two	$\begin{gathered} 2+1 \\ 0 \end{gathered}$	CO1

	cylinders.		
4.	A 1.5 m diameter, 5 m long cylindrical propane tank is initially filled with liquid propane, whose density is $581 \mathrm{~kg} / \mathrm{m}^{3}$. The tank is exposed to the ambient air at $25^{\circ} \mathrm{C}$ in calm weather. The outer surface of the tank is polished so that the radiation heat transfer is negligible. Now a crack develops at the top of the tank, and the pressure inside drops to 1 atm while the temperature drops to $-42^{\circ} \mathrm{C}$, which is the boiling temperature of propane at 1 atm . The heat of vaporization of propane at 1 atm is $425 \mathrm{~kJ} / \mathrm{kg}$. The propane is slowly vaporized as a result of the heat transfer from the ambient air into the tank, and the propane vapor escapes the tank at $-42^{\circ} \mathrm{C}$ through the crack. Assuming the propane tank to be at about the same temperature as the propane inside at all times, determine how long it will take for the tank to empty if it is not insulated. The properties of air are: $\mathrm{k}=0.02401 \mathrm{~W} / \mathrm{m}-\mathrm{K}, \mathrm{v}=1.382 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}, \mathrm{Pr}=0.7350$ Relation of Nusselt Number is given by: $N u=\left\{0.6+\frac{0.387 R a^{1 / 6}}{\left[1+\left(\frac{0.599}{P r}\right)^{9 / 16}\right]^{8 / 27}}\right\}^{2}$	12	CO3
5.(a) (b)	Explain the effect of presence of non-condensables on rate of condensation of condensable vapors? Saturated air-free steam at $85^{\circ} \mathrm{C}$ condenses on the outer surface of 225 horizontal tubes of 12.7 mm outer diameter arranged in a 15×15 array. Tube surfaces are maintained at 75 ${ }^{0} \mathrm{C}$. Calculate the total condensation per metre length of the tube bundle. Properties of air are: $\rho=971.8 \mathrm{~kg} / \mathrm{m}^{3}, \mu=360.7 \times 10^{-6} \mathrm{~kg} / \mathrm{m}-\mathrm{s}, \mathrm{h}_{\mathrm{fg}}=2257 \mathrm{~kJ} / \mathrm{kg}, \mathrm{k}=0.67 \mathrm{~W} / \mathrm{m}-\mathrm{K}$.	4+8	CO4
6.	Hot water at $90{ }^{\circ} \mathrm{C}$ flows on the inside of a 2.5 cm ID steel tube with 0.8 mm wall thickness at a velocity of $4 \mathrm{~m} / \mathrm{s}$. This tube forms the inside of a double-pipe heat exchanger. The outer pipe has a 3.75 cm ID, and engine oil at $20^{\circ} \mathrm{C}$ flows in the annular space at a velocity of $7 \mathrm{~m} / \mathrm{s}$. Calculate the overall heat-transfer coefficient for this arrangement. The tube length is 6.0 m . For water at $90{ }^{\circ} \mathrm{C}: \rho=965 \mathrm{~kg} / \mathrm{m}^{3}, \mu=3.16 \times 10^{-6} \mathrm{~kg} / \mathrm{m}-\mathrm{s}, \mathrm{k}=0.676 \mathrm{~W} / \mathrm{m}-\mathrm{K}, \operatorname{Pr}=1.96$ For Engine oil: $v=0.0009 \mathrm{~m}^{2} / \mathrm{s}, \quad \mathrm{k}=0.145 \mathrm{~W} / \mathrm{m}-\mathrm{K}, \operatorname{Pr}=10400, \mathrm{v}_{\mathrm{w}}=0.289 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}$, and Nusselt Number is given by $N u_{d}=1.86\left(\mathfrak{R}_{d} \operatorname{Pr}\right)^{1 / 3}\left(\frac{d}{l}\right)^{1 / 3}\left(\frac{\mu}{\mu_{w}}\right)^{1 / 3}$	12	CO5
7.	A single effect vertical short tube evaporator is used to concentrate a syrup from 10% to 40% solids at the rate of 2000 kg of feed per hour. The feed enters at $30^{\circ} \mathrm{C}$ and a reduced pressure of $0.33 \mathrm{~kg} / \mathrm{cm}^{2}$ is maintained in the vapour space. At this pressure, the liquor boils	12	CO5

\begin{tabular}{|c|c|c|c|}
\hline \& at \(75^{\circ} \mathrm{C}\). Saturated steam at \(115^{\circ} \mathrm{C}\) is supplied to the steam chest. No sub cooling of the condensate occurs. Calculate the steam requirement and the number of tubes if the height of the calandria is 1.5 m . Specific heat of liquor \(=0.946 \mathrm{kcal} / \mathrm{kg}{ }^{\circ} \mathrm{C}\). Latent heat of steam at \(0.33 \mathrm{~kg} / \mathrm{cm}^{2}=556.5 \mathrm{kcal} / \mathrm{kg}\), boiling point of water at this pressure \(=345 \mathrm{~K}\). the overall heat transfer coefficient \(=2150 \mathrm{kcal} / \mathrm{h} \mathrm{m}^{2}{ }^{\circ} \mathrm{C}\). \& \& \\
\hline \multicolumn{4}{|c|}{SECTION - C (20 \(\times 1=20 \mathrm{Marks}\))} \\
\hline 8.(a)
(b) \& \begin{tabular}{l}
Discuss the common causes of fouling in a heat exchanger. How does fouling affect its performance? What is the effect of fluid velocity and temperature on fouling? \\
Blood at \(32^{\circ} \mathrm{C}\) enters a 2.5 mm inside diameter steel tube with a volumetric flow rate of 15 \(\mathrm{mL} / \mathrm{s}\). The tube surface is electrically heated to impart a uniform heat flux. The tube wall temperature must not exceed \(44^{\circ} \mathrm{C}\) to avoid damage to the blood. Calculate the minimum length of the tube required to warm the blood to \(37^{\circ} \mathrm{C}\). Blood properties may be approximated as those of water. Properties of water at the bulk mean temperature of \(34.5^{\circ} \mathrm{C}\) are
\[
\rho=994.0 \mathrm{~kg} / \mathrm{m}^{3}, \mu=7.32 \times 10^{-4} \mathrm{~N}-\mathrm{s} / \mathrm{m}^{2}, \mathrm{k}=0.624 \mathrm{~W} / \mathrm{m}-\mathrm{K}, \operatorname{Pr}=4.91, \mathrm{C}_{\mathrm{p}}=4.178 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}
\]
\end{tabular} \& 10 \& \[
\mathrm{CO5}
\]
CO3 \\
\hline \multicolumn{4}{|c|}{OR} \\
\hline 8.(a)

(b) \& | A single pass steam condenser contains 100 thin walled tubes of 25 mm nominal diameter and 2 m length. Cooling water enters at a temperature of $10^{\circ} \mathrm{C}$ leaves at $50^{\circ} \mathrm{C}$ and flows through the tubes at a velocity of $2 \mathrm{~m} / \mathrm{s}$. The condenser pressure is 0.5 bar and the heat transfer coefficient is $5000 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Determine the condensate flow rate. |
| :--- |
| The following properties of water are used: $\rho=995.8 \mathrm{~kg} / \mathrm{m}^{3}, \mu=801 \times 10^{-6} \mathrm{~kg} / \mathrm{m} . \mathrm{s}, \mathrm{C}_{\mathrm{p}}=4.178 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K}, \mathrm{k}=0.617 \mathrm{~W} / \mathrm{m} \mathrm{~K}$ |
| The hot water needs of a household are to be met by heating water at $55^{\circ} \mathrm{F}$ to $200^{\circ} \mathrm{F}$ by a parabolic solar collector at a rate of $4 \mathrm{lbm} / \mathrm{s}$. Water flows through a 1.25 -in.-diameter thin aluminium tube whose outer surface is black anodized in order to maximize its solar absorption ability. The centerline of the tube coincides with the focal line of the collector, and a glass sleeve is placed outside the tube to minimize the heat losses. If solar energy is transferred to water at a net rate of 350 Btu/h per ft length of the tube, estimate the required length of the parabolic collector to meet the hot water requirements of this house. Also, determine the surface temperature of the tube at the exit. |
| The properties of water at the average temperature of $127.5^{\circ} \mathrm{C}$ are: $\begin{aligned} & \rho=61.59 \quad \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}, v=0.5683 \times 10^{-5} \mathrm{ft}^{2} / \mathrm{s}, \mathrm{C}_{\mathrm{p}}=0.999 \mathrm{Btu} / \mathrm{lbm}{ }^{\circ} \mathrm{F}, \mathrm{k}=0.374 \mathrm{Btu} / \mathrm{ft}^{\circ} \mathrm{F}, \\ & \operatorname{Pr}=3.368 . \end{aligned}$ | \& 10 \& $\mathrm{CO5}$ \\

\hline
\end{tabular}

