Name:

Enrolment No:

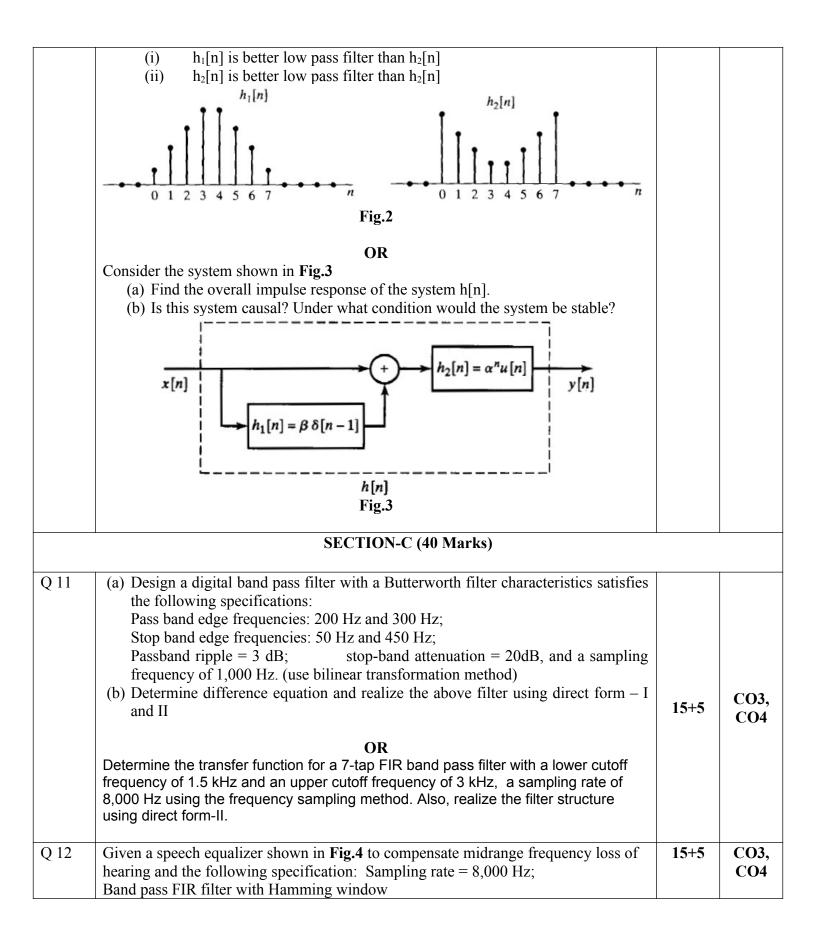
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

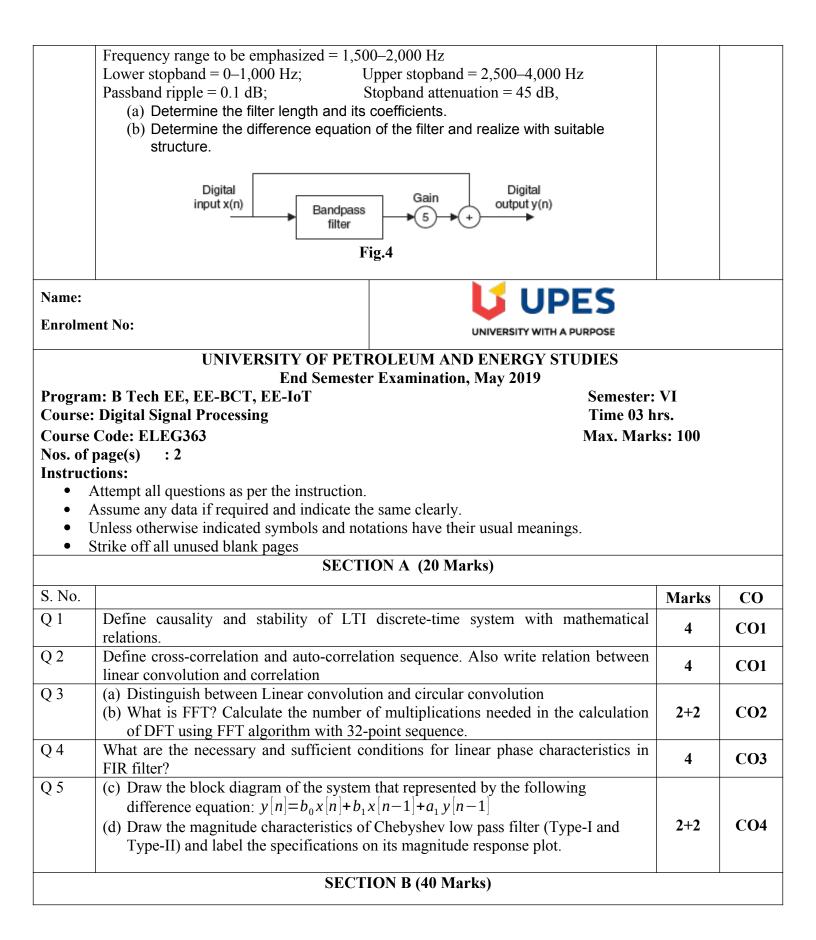
Program: B Tech EE, EE-BCT, EE-IoT **Course: Digital Signal Processing**

Course Code: ELEG363 : 3

Nos. of page(s)

Instructions:


- Attempt all questions as per the instruction. •
- Assume any data if required and indicate the same clearly. •
- Unless otherwise indicated symbols and notations have their usual meanings. •
- Strike off all unused blank pages •


SECTION A (20 Marks)

S. No.		Marks	CO
Q 1	Determine the range of a and b for which LTI system is stable with impulse response $h[n] = \begin{cases} a^n; n > 0 \\ a^n; n > 0 \end{cases}$	4	C01
Q 2	Define the convolution sum. What are the properties of the convolution sum?	4	CO1
Q 3	If X[k] is the DFT of the sequence x[n], determine the N-point DFTs of the following sequences $x_c[n] = x[n] \cos\left(\frac{2\pi}{N}k_0n\right)$ and $x_s[n] = x[n] \sin\left(\frac{2\pi}{N}k_0n\right)$ in terms of X[k].	4	CO2
Q 4	Briefly discuss the digital filter specifications and label on magnitude characteristics of filter.	4	CO3
Q 5	 (a) A discrete time system is operated on an input sequence to produce an output sequence according to some computation algorithm: y[n]=∑_{k=0}^M b_kx[n-k]+∑_{k=1}^N a_ky[n-k] Find its transfer function (b) Obtain the difference equation to represent the discrete time system of the Fig.1 given below 	2+2	CO4

Semester: VI Time 03 hrs. Max. Marks: 100

	$x(n) \xrightarrow{b_0} \xrightarrow{+} y(n)$ $x(n-1) \xrightarrow{z^{-1} b_1} \xrightarrow{b_1} y(n-1)$ $x(n-2) \xrightarrow{z^{-1} b_2} \xrightarrow{-a_2 \ z^{-1}} y(n-2)$ Fig.1		
	SECTION B (40 Marks)		
Q 6	(a) Evaluate the following convolution sum $y[n] = x_1[n] * x_2[n] * x_3[n]$. Where $x_1[n] = 0.5^n u[n]; x_2[n] = u[n+3] \land x_3[n] = \delta[n] - \delta[n-1]$ (b) Consider a system with impulse response $h[n] = \left\{ \left(\frac{1}{2}\right)^n; 0 \le n \le 4 \\ 0; elsewhere$ Determine the input x[n] for $0 \le n \le 3$ that will generate the output sequence y[n] $= \{1, 2, 2.5, 3, 3, 3, 2, 1, 0,\}$	4+4	CO1
Q 7	 (a) If X[k] is the 5-point DFT of the sequencex[n]=2δ[n]+δ[n-1]+δ[n-3]. What sequence y[n] has a 5-point DFT Y[k]=2X[k]cos((6πk)/10) (b) Draw the butterfly flow diagram for computing 8-point DFT using decimation in time FFT algorithm. 	6+2	CO2
Q 8	 (a) A third-order Butterworth low pass filter has the transfer function: H(s)= 1/(s+1)(s²+s+1) Design a digital filter H(z) with cut-off frequency 5 Hz and sampling frequency 15 Hz using Impulse Invariance method. (b) Prove that the FIR filter phase response is linear. (Assume N=7 and the impulse response satisfies the positive symmetry. 	4+4	СО3
Q 9	Given a fourth-order filter transfer function $H(z) = \frac{(0.343z^2 + 0.6859z + 0.343)(0.4371z^2 + 0.8742z + 0.4371)}{(z^2 + 0.7075z + 0.7313)(z^2 - 0.1316z + 0.1733)}$ (a) Realize the digital filter using the cascade (series) form via second order sections using the direct form II; (b) Determine the difference equations for implementation	8	CO4
Q 10	 Two finite duration sequences h₁[n] and h₂[n] of length 8 are sketched in Fig.2. they are related by a circular shift i.e. h₂[n]=h₁[(n-m)₈]. (a) What is the value of m and specify whether the magnitude of 8-point DFTs of h₁[n] and h₂[n] are equal. (b) Which of the following statement is correct? Justify your answer. 	8	CO1, CO2

Q 6	(2;k=0,1,2)		
	(a) Given sequence $x[k] = \begin{cases} 2; k=0, 1, 2\\ 1; k=3, 4\\ 0; otherwise \end{cases}$		
	Sketch the sequence $x[k]$ and the reverse sequence $x[-k]$, the shifted sequences $x[-k+2]$ and $x[-k-3]$.	4+4	CO1
	(b) Find the discrete time convolution sum of the following $y[n] = x[n] * u[n-2]$.		
	Where $x[n] = 3^{n}u[-n+3]$.		
Q 7	(a) State and prove the any three properties of DFT		
	(b) Compute the DFT of the sequence $x[n] = \{1, -1, 1, 0, -1, 1, 1, -1\}$ using	3+5	CO2
<u> </u>	decimation in time FFT algorithm.		
Q 8	(a) Compare the impulse invariance and bilinear transformation methods		
	(b) Find the order and poles of a low pass Butterworth filter that has a 3db bandwidth of 400 Hz and an attenuation of 20db at 1KHz		
	OR		
	Consider the following Laplace transfer function:		
			CO3
	$H(s) = \frac{s+5}{(s+2)(s^2+3s+2)}$		
	Determine $H(z)$ and the difference equation using the impulse invariant method if the		
	sampling rate is 10 Hz.		
Q 9	Given a filter transfer function,		
	$H(z) = \frac{(0.4371 z^2 + 0.8742 z + 0.4371)}{(z^2 + 0.7075 z + 0.7313)}$		
		8	CO4
	(a) Realize the digital filter using direct form I and using direct form II;		
	(b) Determine the difference equations for each implementation.		
Q 10	Consider discrete-time system is described with following difference equation:		
	$y[n] + \frac{1}{a}y[n-1] = x[n-1]$		
	(a) Find the impulse response of the system h[n], as a function of the constant <i>a</i> .	8	CO1
	(b) Is this system causal? Under what condition would the system be stable?		
	SECTION-C (40 Marks)		
	-		1
Q 11	A band pass filter with Butterworth magnitude-frequency response satisfies the following specifications:	20	CO3, CO4
	Passband: $0.3 - 3.4$ kHz Stopband: $0 - 0.2$ kHz and $4 - 8$ kHz		
	Pass band ripple= 3 dBStop band attenuation = 25 dB		
	Sampling frequency = 32 kHz		
	Obtain a suitable transfer function for the filter using the bilinear transformation		
	method and realize the filter in direct form-I and II.		
	OR		
	Design a 7-tap FIR band pass filter with a lower cutoff frequency of 1,600 Hz, an		

	upper cutoff frequency of 1,800 Hz, and a sampl (a) Rectangular window function (b) Hamming window function.	ing rate of 8,000 Hz using		
Q 12	 In a speech recording system with a sampling ratio corrupted by broadband random noise. To remove speech information, the following specifications Speech frequency range 0–3,000 kHz Passband ripple = 0.1 dB (a) Design the FIR filter to remove random noise Kaiser Window method. (b) Determine the difference equation and realize structure. 	ve the random noise while preserving are given: Stopband range 4,000–5,000 Hz Stopband attenuation = 60 dB e with the above specifications using	15+5	CO3, CO4