Name:

Enrolment No:

Semester

Max. Marks: 100

Time

: II

: 03 hrs

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2019

Programme Name: B.Tech- ECE, Electrical ADE, Mechatronics, ASE, ASE+AVE,

GSE, GIE, FSE & Civil

Course Name : Basic Electronics Engineering

Course Code : ECEG1002

Nos. of page(s) : 4

Instructions: Attempt all the questions

SECTION A

S. No.				Marks	CO
Q 1	1.Knee2.Break3.Forw	ollowing terms with respect t Voltage c down voltage ard Current rse Current	o a PN junction.	5	CO1
Q 2	A BJT has for and collector		ending on polarities of emitter base junction anction Bias for the below specified modes racteristics. B – C junction (FB -Forward Bias and RB-Reverse Bias)	5	CO1
Q 3		D(Figure 1).	iode V_{out} if Vin is -5V and resistance is $V_{A} \longrightarrow V_{B} \longrightarrow V_{out}$ $\downarrow R$	5	CO2
	Fi	g: 1	Fig: 2		

Q 4	 (A) If a 3-input NOR gate has eight input possibilities, how many of those possibilities will result in a HIGH output? (B) A car may be fitted with an automatic parking light which switches on when the car is parked at night. The diagram shows an incomplete system for a parking light. 	5	CO2
	Complete the diagram with an appropriate gate to make the parking light work.		
	SECTION B		
Q 5	Using only NAND gates, construct a circuit that will implement the following logical expressions. Use Boolean algebra to simplify the expressions as much as possible before you begin. 1. $(A \cdot B) + (A \cdot B) + (A \cdot B) + (A \cdot B)$ 2. $[(A \cdot B) + C] \cdot [(A \cdot B) + D]$ 3. $[(A \cdot B) \cdot (A \cdot B)] + (A \cdot B)$ 4. $(1 + B) \cdot (A \cdot B \cdot C)$	10	CO2
Q 6	 A. In CE configuration Vcc=10 V, R_L=8 x 10³ ohm. Draw the circuit diagram, load line and determine operating point for zero signal if base current is 12 μA and β=40. B. Develop the simplified Boolean expression for the following digital circuit shown in figure below: 	10	CO2
Q 7	Present the Comparative study of CB, CE and CC configuration with their relative parameters and conclude with the most commonly used transistor configuration. Draw the configuration diagrams and mention the applications.	10	CO3

	OR		
	For a transistor derive the expression for α and β . In a transistor configuration, $I_B = 18 \mu A$, $I_E = 25 m A$, and $\alpha = 0.096$. Determine the β rating the transistor. Also calculate the collector current.		
Q 8	Explain the functioning of a Zener diode as voltage regulator for both variable input as well as variable load arrangements draw the circuits and derive the important expressions.	10	CO2
	SECTION-C (Internal Choice in Q.9 and Q.10)		
Q 9	Determine the Q point of the transistor circuit shown below. Draw the dc load line, given $\beta=100$ and $V_{BE}=0.7$ V. + V_{CC} + 10V I_C $I_K\Omega$ R_C I_U R_R + I_C R_E 4.7Kohms I_{JC}	20	CO1& CO2
Q10	 (A)Draw the load line for the network of Fig. below on the characteristics for the transistor appearing in Fig. (B) For a Q -point at the intersection of the load line with a base current of 15 m A, find the values of I_{CQ} and V_{CEQ}. (C) Determine the dc beta at the Q -point. (D) Using the beta for the network determined in part C, calculate the required value of R_B and suggest a possible standard value. 	20	CO1& CO2

	$V_{CC} = 18 V$ R_{B} R_{C} $2.2 k\Omega$ R_{R} R_{E} $1.1 k\Omega$ $Fig.6$		
Q11	(A) Perform the following number system conversions: 1. $101101112 = ()_{10}$ 2. $567410 = ()_2$ 3. $100111002 = ()_8$ 4. $24538 = ()_2$ 5. $1111000102 = ()_{16}$ (B) Using Boolean laws prove the following. 1. $(\overline{AC}+B)(\overline{A}+\overline{C})=ABC$ 2. $(A+B+C)[A+\overline{B}+C](A+B+\overline{C})(A+\overline{B}+\overline{C})=A$ 3. $ABC+A\overline{B}C+AB\overline{C}=A[B+C]$ 4. $A(B+\overline{C})+B(C+\overline{A})+C(A+\overline{B})=A+B+C$ 5. $AB+\overline{A}C+BC=AB+\overline{A}C$	20	СО3

Name: Enrolme	ame: nrolment No:				
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES					
Program	End Semester Examination, May 2019 nme Name: B.Tech- ECE, Electrical ADE, Mechatronics, ASE, ASE+AVE,				
110g1 a1	GSE, GIE, FSE & Civil Seme	ster : II	_		
Course	8 8	: 03	hrs		
Course		Marks : 10	0		
Nos. of	page(s) : 4 tions: Attempt all the questions				
mstruct	SECTION A				
S. No.	Ι		60		
5. INO.	Evaluin the following terms relating to DN investign	Marks	CO		
	Explain the following terms relating to PN junction. 1. Maximum Power rating				
Q 1	2. Static and dynamic forward resistances	_	CO1		
	3. Reverse Resistances	5	CO1		
	4. Barrier potential				
Q 2	5. Maximum Forward Current Present the operation of transistor as a switch. And draw the necessary	7			
Q 2	characteristics.	5	CO1		
	(A) In the circuit below $V_B = 2V$, $V_{in} = 5V$. calculate the voltage across resistor R	5	CO2		
	D VB				
Q 3	\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow				
	$V_{in} \bigcirc R \gtrless V$				
	Fig:1 (B) Calculate the voltage at V1 and V2 of the arrangement shown in Fig. will be				
	respectively. (Assume diode cut in voltage = 0.6 V)				
	$\varphi + 6V$				
	$\sum_{10 k\Omega}$				
	$D \qquad \Delta D_2$				
	$+6$ Vo V_2				
	k k k k k k k k k k k k k k k k k k k				
	\int_{+3V}				

	Fig:2		
Q 4	The diagram below is a block diagram of an electronic circuit. The parts of the circuit are labelled X, Y and Z.		
	Part X Part Y Part Z Heat sensor Light sensor Heater		
	 Fig:3 (A) Name the two types of logic gate used in the circuit above. (B) Give an electrical device which could be used as: (i) the heat sensor (ii) the light sensor. (C) Which part of the circuit, X, Y or Z, is: i) the processor? ii) the input device(s)? iii) the output device(s)? (D) The heat sensor is ON when it is hot and OFF when it is cold. The light sensor is ON when it is light and OFF when it is dark. (i) Explain what happens in each part of the circuit when it is both cold and dark. 	5	CO2
	SECTION B		
Q 5	In the circuit of Fig. below, what would happen if the load resistor were shorted? (b) What would happen if the load resistor were removed? Support your answers with calculations. Hint: think in terms of power ratings. $12 V \cdot \frac{100 \Omega}{\frac{1}{2} W} \frac{1}{4} W \star 5.1 V K_{L}$	10	CO2
Q 6	Fig:4 The bridge rectifier shown in figure below uses silicon diodes. Find dc output voltage and dc output current. Use simplified diode model. (Vin=12V,50Hz ,R _L =12KΩ) D_2 D_2 D_3 D_2 D_3	10	CO3
	$= D_1 D_4^{R_L=12k\Omega}$		

	Fig:5		
Q 7	 (A) Using only NOR gates, give circuits that are equivalent to each of the following: AND, OR, NAND, and XOR. (B) Develop the truth table for the circuit shown in Fig below. 	10	CO2
Q 8	Convert the following numbers into corresponding number system. (2.5 marks each) 1. $6893410 = ()_2$ 2. $10101.0012 = ()_{10}$ 3. $6FAB716 = ()_{10}$ 4. $11101.1012 = ()_8$ 5. $5623816 = ()_2$	10	CO3
Q 9	SECTION-C(Internal Choice between Q9 and Q10) (A) Determine the Q point of the transistor circuit shown below. Draw the dc load line, given $\beta=200$ and $V_{BE}=0.7 \text{ V}$ $I_B \qquad I_B \qquad I_C \qquad$	20	CO1& CO2
Q10	A) Given the load line of Fig below and the defined Q- point(A), determine the required values of V_{CC} , R_C , and R_B and	20	CO1& CO2

	Fig:8 B)Draw the variation of the Q-point for the following cases: 1)with increasing level of I _B 2) Effect of an increasing level of R _c on the load line and the Q-point. 3) Effect of lower values of V _{cc} on the load line and the Q-point.		
Q11	 (A) Develop a full adder using two half adders. Support your circuit with the help of a truth table. (B) Simplify the following Boolean expressions: Y=1+A[B.Ć+BC+B.Ć]+ABC+A Y=[A+B+C]+(B+Ć) Y=[A+B+C].(A+B) Y=AB+ABC+ABĆ 	20	CO3