Name: Enrolm	ame: nrolment No:			
	UNIVERSITY OF PETROLEUM AND ENERGY ST End Semester Examination, March 2019	UDIES		
Programme Name: B.Tech ADESemesterCourse Name: Finite element methodTime			: 03 hrs	
	SECTION A			
S. No.		Marks	CO	
Q 1	Explain the principle of minimum total potential energy.	5	CO1	
Q 2	Describe Rayleigh Ritz method.	5	CO1	
Q 3	Explain C ^o and C ¹ continuity.	5	CO1	
Q 4	Describe constant strain, linear strain and cubic strain triangles.	5	CO1	
	SECTION B			
Q 5	Derive the expressions of shape function for a Four-Noded Quadrilateral.	10	CO2	
Q 6	Describe the two point formula of numerical integration.	10	CO1	
Q 7	A steel rod subjected to compression is modeled by two bar elements, as shown Figure. Determine the nodal displacements and the axial stress in each element. $0.5 \text{ m} \longrightarrow 0.5 \text{ m} \longrightarrow 12 \text{ kN}$ $E = 207 \text{ GPa} A = 500 \text{ mm}^2$	n in 10	CO3	
Q 8	A plane truss is loaded and supported as shown in Figure. Determine displacements at the ends using finite element method. Take, $E = 200$ GPa and 200 mm^2		CO3	

OR Image: Construction of the transmitter shown in Figure using finite element method. Take, F = 200 GPa and A = 200 mm ² 10 CO3 Image: Construction of the transmitter shown in Figure using finite element method. Take, F = 200 GPa and A = 200 mm ² Image: Construction of the transmitter shown in Figure using finite element method. Take, F = 200 GPa and A = 200 mm ² Image: Construction of the transmitter shown in Figure using finite element of the transmitter shown in Figure. Image: Construction of the transmitter shown in Figure. Q 10 Determine the deflection at the point of load application in the triangular plate shown in Figure. Image: Construction of the transmitter shown in Figure. <th></th> <th></th> <th></th> <th></th>				
clement method. Take, E = 200 GPa and A = 200 mm ² 10 KN 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1		OR		
Q 9A long cylinder of inside diameter 80 mm and outside diameter 120 mm snugly fits in a hole over its full length. The cylinder is then subjected to an internal pressure of 2 MPa. Using two elements on the 10 mm length shown, find the displacements at the inner radius. Also, validate your findings analytically.20CO4Q 10Determine the deflection at the point of load application in the triangular plate shown 		element method. Take, $E = 200 \text{ GPa and } A = 200 \text{ mm}^2$	10	CO3
In a hole over its full length. The cylinder is then subjected to an internal pressure of 2 MPa. Using two elements on the 10 mm length shown, find the displacements at the inner radius. Also, validate your findings analytically.20CO4Q 10Determine the deflection at the point of load application in the triangular plate shown in Figure.20CO3Q 10Determine the deflection at the point of load application in the triangular plate shown in Figure.20CO3		SECTION-C		
in Figure. $30 \text{ mm} \longrightarrow 50 \text{ N}$ $20 \text{ mm} \longrightarrow 50 \text{ N}$ $t = 10 \text{ mm}$ $E = 70,000 \text{ MPa}$ $y = 0.3$ 20 CO3	Q 9	in a hole over its full length. The cylinder is then subjected to an internal pressure of 2 MPa. Using two elements on the 10 mm length shown, find the displacements at the inner radius. Also, validate your findings analytically.	20	CO4
OR	Q 10	Determine the deflection at the point of load application in the triangular plate shown in Figure. 100 N 30 mm 50 N t = 10 mm E = 70,000 MPa $\nu = 0.3$	20	CO3
		OR		

A rectangular plate is loaded and supported as shown in Figure. Find the stiffness matrix and apply the boundary conditions using Penalty approach. Use a four noded quadrilateral element.		
$E = 70 \text{ GPa}$ $\nu = 0.33$ Thickness = 10 mm	20	CO3