Name:

S. No.

Enrolment No:

CO

Marks

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2019

Course: Energy Conversion Semester: IV

Program: B. Tech - Power System Engineering **Time 03 hrs.**

Course Code: EPEG 2009 Max. Marks: 100

Instructions: All questions are compulsory

SECTION A

Q 1	Name the common liquid fuels used in Power Plants. Explain four important characteristics of fuel oil.	4	CO1		
Q 2	State the properties of Control rods used in Nuclear Reactor	4	CO2		
Q 3	Enumerates the methods to improve thermal efficiency of a gas turbine power plant.	4	CO2		
Q 4	Mention the essential major components of a typical Diesel Power Plant.	4	CO2		
Q 5	A reaction turbine is supplied with 112 cu m of water per second and works under a maximum head of 135 m at 350 rpm. Assuming overall efficiency of the plant 80 % and specific weight of water 1000 kg/m³; calculate the horse power developed and power in kW.	4	CO3		
	SECTION B				
Q 6	A power plant supplies the following loads to the consumers.				
	Time in hours 0-6 6-10 10-12 12-16 16-20 20-22 22-24				
	Load in MW 30 70 90 60 100 80 60				
	(i) Draw the load curve and estimate the load factor of the plant.				
	(ii) What is the load factor of a standby equipment of 30 MW capacity if it takes up all loads above 70 MW.(iii) What is its use factor.				
Q 7	Explain with the help of neat line diagram Air and Flue Gas circuit of modern steam plant .	10	CO3		

Q 8	Explain the systems of pulverized coal firing system used in Thermal Power Plants .	10	CO3	
Q 9	What is M.H.D. generator. With the help of schematic diagram Explain the working	10	CO4	
	of open cycle M.H.D. generator.			
OR				
Q 9	Explain the term Combined Cycle Power Plant . With the help of neat line Diagram	10	CO4	
	Explain CCGT (Combined Cycle Gas Turbine Plant)			
	SECTION-C			
Q 10	(a) A generating station has the following data:			
	Installed capacity = 300 MW; Capacity factor = 50 %; Annual load factor = 60 %			
	Annual cost of fuel, oil etc. = Rs 135×10^7 ; capital cost = Rs 15.5×10^9 ; annual	12.0	CO4,	
	interest and depreciation = 10 % . Calculate (i) the minimum reserve capacity of the	12+8	CO3	
	station and (ii) the cost per kWh generated.			
	(b) What are the applications of Diesel electric Power Plants?			
OR				
Q 10	(a) For a hydro -electric power station the following data is available :			
	Head $= 350 \text{ m}$			
	Discharge = $4.5 \text{ m}^3/\text{sec.}$			
	Efficiency of turbine = 80 %			
	enerator efficiency = 90 %			
	Generator frequency = 50 Hz	12+8	CO4,	
	Determine the following:		CO3	
	(i) Output (ii) Type of turbine (iii) speed of turbine			
	Take the specific speed of turbine to be 28 (metric unit)			
	(b) Explain the function of following in Hydro-electric Power Plant			
	(i) Spillway (ii) Surge Tanks			
Q11	(a) Categorize Ash on the basis of Particle size . Accordingly Design Ash Handling		001	
	system.	12+8	CO4,	
			CO ₃	

Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2019

Course: Energy Conversion Semester: IV

Program: B.Tech-Power System Engineering Time 03 hrs.

Course Code: EPEG 2009 Max. Marks: 100

Course	Code: EFEG 2009 Wax	a. Marks: 100	
Instruc	ctions: All questions are compulsory		
	SECTION A		
S. No.		Marks	CO
Q 1	What is the proximate and ultimate analysis of coal? How quality of coal is ascended from the analysis?	ertained 4	CO1
Q 2	What is a nuclear reactor Name the main parts of a nuclear reactor.	4	CO2
Q 3	Explain the important functions of a condenser in steam power plant.		CO2
Q 4	What are the advantages of Combined Cycle Gas Turbine Plant(CCGT)		CO3
Q 5	Calculate the total energy in kWh which can be generated from a hydro powe station having following data: Reservoir area $= 3.5 \text{ sq.km}$ Capacity $= 7.5 \text{ X } 10^6 \text{ m}^3$ Net head of water at turbines $= 95 \text{ m}$ Turbine efficiency $= 80 \text{ \%}$ Generator efficiency $= 93 \text{ \%}$	4	CO3
	SECTION B		
Q 6	The yearly duration curve of a certain plant can be considered a straight line f 30,000 kW to 10,000 kW. To meet this load, three turbine generator units, t rated at 15,000 kW and one at 7,500 kW are installed. Evaluate (i) installed c (ii) Plant factor (iii) maximum demand (iv) load factor (v) Utilization factor.	wo 10	CO2
Q 7	Explain with the help of neat line diagram Cooling Water Circuit of modern steam plant .	10	CO2

Q 8	Sketch and describe the principle of thermo electric conversion system .	10	CO4			
Q9	What are the essential components of a simple open cycle gas turbine plants? Explain		002			
	with neat diagram.		CO3			
OR						
Q 9	Give the Layout of a Diesel Engine Power Plant .	10	CO3			
	SECTION-C	1				
Q10	(a) A 120 MW hydro-electric plant costs Rs 5.5 X 10 ⁴ per kW of installed capacity.					
	The total annual charges consists of 5 % as interest; depreciation as 2 %;					
	operation and maintenance as 2 % and insurance, rent etc. 1.5%. Determine a					
	suitable two-part tariff if the losses in transmission and distribution are 12.5 %					
	and diversity of load is 1.25 . Assume that maximum demand on the station is	12+8	CO4 CO2			
	80 % of the capacity and annual load factor is 40 %. What is the overall cost of		COZ			
	Generation per kWh?					
	(b) What are the considerations to be made while selecting the suitable site for a					
	Nuclear Power Plant ?					
OR						
Q 10	(A) The run off data of a river is as under:					
	Jan 75 million m³/month July 210 million m³/month					
	Feb 50 million m ³ /month Aug 180 million m ³ /month					
	March 40 million m ³ /month Sept 150 million m ³ /month					
	April 20 million m ³ /month Oct 120 million m ³ /month					
	May 0 million m³/month Nov 100 million m³/month	12+8	CO4 CO2			
	June 75 million m ³ /month Dec 80 million m ³ /month		CO2			
	(i) Plot hydrograph and flow duration curve . Find mean flow .					
	(ii) Find the power available at mean flow if head is 120 m and efficiency of					
	generation is 82 % . Take each month of 30 days .					
	(B) Explain the ways of increasing Thermal Efficiency of a Steam Power Plant.					
Q11	Describe Briefly					
	(a) Pressurized water reactor (P.W.R) (b) Principle of M.H.D generator	4X5	CO4 CO2			
	(c) Electrostatic Precipitator (ESP) (d) Peak Load Power Plants.					