SET A

Name: **Enrolment No: UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May2019 Programme Name: B. Tech Avionics Engg** Semester : VIII **Course Name** : Control System Engineering : 03 hrs Time **Course Code** :ELEG 271 Max. Marks: 100 Nos. of page(s) : **Instructions:** SECTION A S. No. All Questions are compulsory. Marks CO Q 1 The open loop transfer function of a unity feedback system is given by G(s) = $K/s(s+4)(s^2+s+1)$. Determine the value of K that will cause sustained oscillations in the 5 **CO2** closed loop system. Also, find the natural frequency of oscillation? Q 2 Comment on the stability and location of poles of the given characteristic equation, 5 **CO3** 1+G(s)H(s)= 2s⁶+5s⁵+3s⁴+6s³+5s²+6s+1. Draw the block diagram of a closed loop control system showing all necessary Q 3 elements. 5 **CO1** Q 4 Classify the system on various basis and comment. 5 **CO12 SECTION B** Q 5 How many poles are in the right half plane, in the left hale plane and on the *jw* axis for the open loop system? **CO2** 10 $\frac{s^2 + 4s - 3}{s^4 + 4s^3 + 8s^2 + 20s + 15}$ C(s)Obtain the transfer functions for the following systems with state-space models Q6. available as: 10 **CO5** a. $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u; \quad y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} u$ Q7. Explain PID controller along with the block diagram and mathematical equation? What 10 **CO4** are the advantages of PID controller over P, PI and PD controllers?

Q8	For the system as shown in figure the small piston has a face area of 2 in ² and receives an external force of 10 lb. the large piston has a face area of 20 in ² . Calculate the force exerted by the large piston?	10	CO1
	SECTION-C	<u> </u>	
Q9.	 Design a closed loop Second order system for an analog voltmeter such that: (a). The pointer of the analog meter will final settles at 5 V after some time. (b). For second cycle the peak overshoot measured as 20%. (c). Time duration between first peak time and 4th peak time noticed as 30s. Also determine the output response equations and draw the output and input on same scale. 	20	CO2
Q10	Using the Nyquist criterion ,find the range of K for stability for the system shown in figure? $\frac{R(s) + K}{(s+2)} + C(s) + C($	20	CO3

Name: Enrolm	ent No:						
	UNIVERSITY OF PETROLEUM AND ENERGY STU End Semaster Examination May 2010	DIES					
End Semester Examination, May2019Programme Name: B. Tech Avionics EnggSemester : VIII							
Course Name : Control System Engineering Time Course Code :ELEG 271 Max. Mar Nos. of page(s) :			rs				
Instruct	tions:						
	SECTION A						
S. No.	All Questions are compulsory.	Marks	CO				
Q 1	The open loop transfer function of a unity feedback system is given by $G(s)$ K/s(s+4)(s ² +s+1). Determine the value of K that will cause sustained oscillations in th closed loop system. Also, find the natural frequency of oscillation?		CO1				
Q 2	Comment on the stability and location of poles of the given characteristic equation $1+G(s)H(s)=2s^{6}+5s^{5}+3s^{4}+6s^{3}+5s^{2}+6s+1$.	n, 5	CO3				
Q 3	Draw the block diagram of a closed loop control system showing all necessary elements.	5	CO2				
Q 4	Classify the system on various basis and comment.	5	CO1				
	SECTION B						
Q 5	(a).Find the break-away points of the root locus defined for G(s)H(s)= K/s(s+4)(s+5)	2					
~~	(b).What will be the value of K so that the closed loop system shown in figure becomes marginally stable? $R \rightarrow K - \frac{1}{s(s+1)(s+5)} \sim C$		CO3				
Q6.	A first order closed loop control system is defined by $T(s) = K/(s+2a)$. If a unit step input is applied, the system response reaches 40 % of its steady state value in 20 sec How much time will it take the response to reach 90% of the steady state value? Plo the curve also?		CO2				
Q7.	The open loop transfer system function of a unity feedback system is $G(s) = K/s(1+Ts)$.). 10	CO2				

	 (a)Find by what factor the gain K be reduced so that the overshoot is reduced by 60% to 50%. (b) Find by what factor the gain K be reduced so that the damping ratio is increased from 0.1 to 0.6 		
Q8	Obtain the transfer functions for the following systems with state-space models available as: a. $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$; $y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} u$	10	CO5
	SECTION-C		
Q9.	 Design a closed loop Second order system for an analog voltmeter such that: (a). The pointer of the analog meter will final settles at 5 V after some time. (b). For second cycle the peak overshoot measured as 20%. (c). Time duration between first peak time and 4th peak time noticed as 30s. Also determine the output response equations and draw the output and input on same scale. 	20	CO3
Q10	Let $G(s) = \frac{-K(S+1)^2}{s^2+2S+2}$ With K>0 in figure (a) Find the range of K for closed –loop stability? (b) Sketch the system's root locus? (c) Find the position of the closed –loop poles where K=1 and K=2 ?	20	CO4