

Q9.	A submarine which may be supposed to approximate a cylinder 3 m in diameter and 15 m long travels submerged at $1.54 \mathrm{~m} / \mathrm{s}$ in sea water at $4^{\circ} \mathrm{C}$. Find the drag exerted on it. Take kinematic viscosity as $1.67 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$ and density as $1025 \mathrm{~kg} / \mathrm{m}^{3}$. Also find the friction drag.	10	CO 2
SECTION-C			
Q10	A trapezoidal channel has a bed width $B=5.0 \mathrm{~m}, \mathrm{~S}_{0}=0.0004$, side slope $\mathrm{m}=2 \mathrm{H}: 1 \mathrm{~V}$ and $\mathrm{n}=0.02$. The normal depth of flow $\mathrm{y}_{0}=3.0 \mathrm{~m}$. If the channel empties into a pool at the downstream end and the pool elevation is 1.25 m higher than the canal bed elevation at the downstream end, calculate and plot the resulting GVF profile.	20	CO 3
	OR		
Q10.	a) What are the different types of Hydraulic jump on the basis of Froude no. Explain each type with the help a neat diagram. b) In a hydraulic jump taking place in a horizontal apron below an Ogee shaped weir the discharge per unit width is $0.25 \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m}$ and the energy loss is 2.75 m . Estimate the depths at the toe and heel of the jump.	10+10	CO 3
Q11	a) With the help of neat sketch, explain all the main components of radial flow reaction turbine. Also explain the important functions of these components. b) A jet of water, moving at $45 \mathrm{~m} / \mathrm{s}$ impinges without shock a series of vanes moving at a velocity of $15 \mathrm{~m} / \mathrm{s}$, the direction of motion of vanes is inclined at 20° to that of the jet. The relative velocity at outlet is 0.9 to that of inlet, and the absolute velocity of water at exit is to be normal to the motion of vanes. Find a) vane angles at entry and exit b) work done on vanes per unit weight of water supplied by the jet and c) hydraulic efficiency.	10+10	CO4

Name: Enrolment No:	UNIVERSITY WITH A PURPOSE		
\left.UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019 $\right)$			
Set B			
SECTION A			
S. No.		Marks	CO
Q 1	What is the discharge through a circular pipe of 40 mm diameter for a laminar flow having center-line velocity of $1.5 \mathrm{~cm} / \mathrm{s}$?	4	CO1
Q2.	Explain the classification for hydro-dynamically smooth boundary.	4	CO1
Q3.	Velocity of air passing through a rectangular duct and a circular duct is same. Which one of the following is the correct expression for the equivalent diameter of the circular duct in respect of a rectangular duct for the same pressure loss per unit length? (a and b are the length and breadth of the rectangular duct cross-section)	4	$\mathrm{CO3}$
Q4.	Define shape factor in case of boundary layer theory.	4	CO2
Q5.	Explain the process of cavitation in case of turbines.	4	CO4
SECTION B			
Q6	Find the maximum power the can be transmitted by a power station through a hydraulic pipe of 3 Km long 200 mm diameter. The pressure of water at the power station is 1500 kPa . Take $\mathrm{f}=0.01$	10	CO1
OR			
Q6	A siphon has a uniform circular bore of 75 mm diameter and consists of a bent pipe with its crest 1.8 m above water level and a discharge to the atmosphere at a level 3.6 m below water level. Find the velocity of flow, the discharge and the absolute pressure at crest level if the atmospheric pressure is $98.1 \mathrm{kN} / \mathrm{m} 2$. Neglect losses due to friction.	10	CO1

| | a) | |
| :--- | :--- | :--- | :--- | :--- |
| Q11. | A centrifugal pump delivers 30 litres per seconds of water to a height of 18 m
 through a pipe of 90m long and of 100mm diameter. If the overall efficiency
 of the pump is 75\%, find the power required to drive the pump. Take $\mathrm{f}=0.012$. | $\mathbf{1 0 + 1 0}$ |
| b)With the help of neat sketch, explain all the main components of a high head
 impulse turbine. Also explain the important functions of these components. | CO4 | |

