Name: Enrolment No:	UPES			
UNIVERSITY OF PETRO	OLEUM AND ENERGY STUDI	ES		
End Semester Examination, May 2019				
Programme Name: B. Tech in Applied Petroleum Engineering, Spl. Gas Semester				
Course Name: Mass Transfer OperationsTime		: 03 hrs.		
Course Code: CHEG 211Nos. of page(s): 2	Max.	Marks : 1	00	
Instructions: The exam will be <u>OPEN BOOK an</u>	d OPEN NOTES exam. The students are all	owed anv		
textbooks, photo-copied and hand-written notes.				
SE	CTION A [30]			
S. No.		Marks	CO	
Q1. When coal is burned, oxygen from air is	used for the combustion and carbon dioxide is		00	
surface. If the flow of oxygen and carbon the rate of combustion of coal at 40°C and surface may be assumed to be 5 mol%.	the rate at which oxygen is reaching the coal dioxide is assumed to be equal, then calculate 1 atm. The concentration of oxygen at the coal The system may be assumed to be valid in er a small air film thickness of 5 cm near the	[15]	C01	
mixture of carrier A, solute C and solvent curve QPS represents the Liquid-Liquid-	nd Raffinate phases.	[15]	CO5	

	SECTION B [40]		
Q3.			CO4
Q4.	Benzene can be removed from air by adsorption process, using activated carbon. Air- benzene mixture containing 25% benzene vapor is fed to a cross-current 3 staged process at 50 Kg/hr at 35°C and 1 atm. If 300 kg/hr of activated carbon is equally divided in each of these stages, calculate the percentage recovery of benzene at the end of the process. The equilibrium data for the system is as follows: \underline{y} 0.00100.00450.02510.1150.2510.3980.5150.813 \underline{X} 0.05220.0870.1390.1740.2260.2780.3130.348Here, y is Partial pressure of benzene in air (atm) and X is Kg benzene/kg carbon	[20]	CO4
Q5.	SECTION-C [30] A liquid mixture containing 40% propane and 60% benzene is fed to 2 single staged flash separators as shown below. The liquid mixture is fed to flash F1 at 200 kmol/hr and the distillate D1 is removed at 80 kmol/hr. For improved separation, the residue from flash F1 is fed as a feed to flash F2, where the residue W2 is removed at 50 kmol/hr. Both the flash separators are operated at 10 atm and 80°C. The average relative volatility may be assumed constant at 2.9. Calculate the percentage of propane separated. Feed F1 Feed F1 F2 W1 F2 W2	[30]	CO5