Name: Enrolment No:							
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES							
Nos. of page(s) : 3 pages			: 03 hrs				
Instruc	tions: Use graph sheet for drawing phase diagram in Q-11 SECTION A						
S. No.		Marks	CO				
Q 1	Define linear and planer density. Find the planer density of (111) plane in BC crystal structure.	^C 4	CO1				
Q-2	Classify aluminum alloys. Write down the chemical composition and applications duralumin.	of 4	СО-3				
Q-3	Describe the significance of Ni and Cr in stainless steel.	4	CO-3				
Q-4	Explain Austempring and Martempring with the help of TTT diagram.	4	CO-4				
Q-5	Differentiate between ductile and brittle fracture.	4	CO-5				
	SECTION B						
Q-6	 a) Find the miller indices of the plane A and B shown in the cubic structure.[4] a) Find the miller indices of the plane A and B shown in the cubic structure.[4] b) Define burger vector. Differentiate between edge, screw and mixed dislocation. [6] 	10	CO1				

Q-7	Draw the labeled iron Fe-Fe ₃ C phase diagram (draw it on your answer sheet do not use graph sheet). 1kg of the steel having 0.4% carbon is cooled slowly from 1000 °C to just below the 723°C temperature. Find the amount of pro-eutectoid ferrite and perlite at this temperature in grams.	10	CO-2
Q-8	Describe the following a) Magnesium alloys b) Brass and bronze	10	СО-3
Q-9	Define creep. Draw the typical creep curve and explain primary, secondary and tertiary creep in detail.		
	OR		
	Steady-state creep rate data are given here for some alloy taken at 473 K.		
	$\dot{\boldsymbol{\epsilon}}_{s}(h^{-1})$ $\sigma[MPa(psi)]$	10	CO-5
	$\begin{array}{cccc} 2.5 \times 10^{-3} & 55 \ (8000) \\ 2.4 \times 10^{-2} & 69 \ (10,000) \end{array}$		
	If it is known that the activation energy for creep is 140,000 J/mol, compute the steady-state creep rate at a temperature of 523 K and a stress level of 48 MPa. Take the value of universal gas constant $R= 8.31$ J/mol-K.		
	SECTION-C		
Q-10	 a) Draw a labeled time- temperature-transformation (TTT) curve and differentiate between TTT and CCT curve. Explain annealing, normalizing and quenching with the help of TTT diagram. [12] b) Write a short note on Tempered glass [4] Thermoset and thermoplastic [4] 	20	CO4 & CO3
Q-11	 Pb melts at 620°F and Sn melts at 450°F. They form a eutectic containing 62% Sn at 360°F. The maximum solid solubility of Sn in Pb at this temperature is 19% (α phase); of Pb in Sn, 3% (β phase). Assume the solubility of each at room temperature is 1 percent. Answer the following. a) Draw the equilibrium diagram to scale on a piece of graph paper labeling all points, lines, and areas. [5] b) Describe the solidification of a 40 percent tin alloy. Sketch its microstructure at room temperature, giving the chemical composition and relative amounts of the phases present just below the eutectic temperature. [5] c) Draw the cooling curve for the above alloy. (Showing phases and degree of freedom at different temperature). [4] d) Find out the composition of alloy that will yield pro-eutectic β and total β weight 	20	CO-2

fraction of 0.23 and 0.65 respectively just below eutectic temperature. [6]	
OR	
A binary alloy having 28 wt % Cu & balance Ag solidifies at 779°C. The solid consists of two pahses $\alpha \& \beta$. Phase α has 9% Cu whereas phase β has 8% Ag at 779°C. At room temperature these are pure Ag & Cu respectively. Melting points of Cu & Ag are 1083° & 960°C respectively. Answer the following	
 a) Construct the phase diagram for this system on a piece of a graph paper and label each region. [5] b) Describe the solidification of a 22 percent Cu alloy. Sketch its microstructure at room temperature, giving the chemical composition and relative amounts of the phases present. [5] 	
c) Draw the cooling curve for above alloy (Showing phases and degree of freedom at different temperature). [4]	
d) Find out the composition of alloy that will yield pro-eutectic α and total α weight fraction of 0.84 and 0.96 respectively just below eutectic temperature. [6]	