Name: Enrolment No:		1 UPES UNIVERSITY WITH A PURPOSE	
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019 Course: Theory of Machines Semester: IV Program: B.Tech - Mechatronics Time 03 hrs. Course Code: MECH 2006 Max. Marks: 100 No. of Pages: 03 Instructions: The marks for each question is mentioned on the right hand side. Each question is mandatory. Question No. 5 and 9 have internal choices.			
SECTION A			
S. No.		Marks	CO
Q 1	Differentiate between Whitworth quick return mechanism and Crank and Slotted lever mechanism.	5	CO1
Q 2	State and explain D'Alembert's Principle.	5	CO1
Q 3	Explain different kinematic pairs according to nature of contact.	5	CO1
Q 4	Explain the process of undercutting in gears with a suitable sketch.	5	CO1
SECTION B			
Q 5	An epicyclic gear train is shown in figure. The number of teeth on A and B are 80 and 200. Determine the speed of the arm ' a ' (i) if A rotates at 100 rpm clockwise and B at 50 rpm counterclockwise. (ii) if A rotates at 100 rpm clockwise and B is stationary. Two 20° full-depth involute spur gears having 30 and 48 teeth are in mesh. The pinion rotates at 840 rpm . The module is 4 mm . If the interference is just avoided, determine (i) addenda on the wheel and the pinion, (ii) the path of contact, (iii) the maximum velocity of sliding at engagement and disengagement of a pair of teeth, and (iv) contact ratio.	10	CO2
Q 6	Each wheel of a four-wheeled rear engine automobile has a moment of inertia of 2.2 $\mathrm{kg} . \mathrm{m}^{2}$ and an effective diameter of 600 mm . The rotating parts of the engine have a	15	CO4

	moment of inertia of $1.25 \mathrm{~kg} . \mathrm{m}^{2}$. The gear ratio of the engine to the back wheel is 3.2. The engine axis is parallel to the rear axle and the crankshaft rotates in the same sense as the road wheels. The mass of the vehicle is 2050 kg and the centre of the mass is 520 mm above the road level. The track width of the vehicle is 1.6 m . Determine the limiting speed of the vehicle around a curve with 120 m radius so that all the four wheels maintain contact with the road surface.						
Q 7	Determine the torque required to be applied to link AB of the linkage shown in figure to maintain the static equilibrium. Take force $\mathrm{F}=100 \mathrm{~N}$. The lengths of the links are mentioned beside each link in mm .					15	CO3
SECTION-C							
Q 8	Use the following data in drawing the profile of a cam in which a knife-edge follower is raised with uniform acceleration and deceleration and is lowered with simple harmonic motion: $\begin{aligned} \text { Least radius of cam } & =60 \mathrm{~mm} \\ \text { Lift of follower } & =45 \mathrm{~mm} \\ \text { Angle of ascent } & =60^{\circ} \\ \text { en ascent and descent } & =40^{\circ} \\ \text { Angle of descent } & =75^{\circ} \end{aligned}$ $\text { Angle of dwell between ascent and descent }=40^{\circ}$ If the cam rotates at 180 rpm , determine the maximum velocity and acceleration during ascent and descent.					20	CO4
Q 9	A rotor has the following properties:					20	CO3
	Mass						
		9 kg		Ange			
	1	9 kg	100 mm	0°			
	2	7 kg	120 mm	60°	160 mm		
		8 kg	140 mm	135°	320 mm		
	4	6 kg	120 mm	270°	560 mm		
	If the shaft is balanced by two counter-masses located at 100 mm radii and revolving in planes midway of planes 1 and 2 , and midway of 3 and 4, determine the magnitude of the masses and their respective angular positions. Justify your answer by graphical method. OR						

