SET A

Name: Enrolment No:							
UNIVERSIT			Y WITH A PURPOSE				
Prog	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019 Programme: B. Tech (Mining Engineering) Semester: VI						
Course: Applied Rock Mechanics and Numerical Modeling		Time: 03 hrs Max. Marks: 100					
Instr	uctions: All questions are compulsory						
S.		SECTION A					
S. No.			Marks	CO			
Q 1	Define the following: (i) Rock Material (ii) Rock Mass (iii) Rock Quality Designation (RQD) (iv) Rock Mass Rating (RMR)		1+1+1+1	CO1			
Q 2	Write a short note on the different coal pill sectors?	lar design approaches used in the mining	4	CO2			
Q 3	Write a short note on the different subsiden	ce prediction methods used in mining?	4	CO4			
Q 4	Write a short note on the following(i) Block Caving(ii) Sub-level Caving		2+2	C05			
Q 5	Write a short note on the purposes and natu	re of monitoring rock mass performance?	4	CO6			
		SECTION B					
Q 6	A Gold-bearing quartz vein of 2 m thick had deep, $\Upsilon = 29 \text{ kN/m}^3$, strike parallel to σ_2 , σ_1 T _o (host rock) = -5 MPa. Determine the foll (i) The maximum permissible stope height (ii) The stress ratio (K)	= 37.0 MPa and, σ_{UCS} (vein) = 218 MPa, owing:	5+5	CO1			
Q 7	 (a) A circular concrete liner in a vertical s 0.65 MPa. Concrete strength is 34.5 MF be 6 m, determine the liner thickness ne 3.5. (b) A 1 m thick circular concrete shaft line MPa in compression. Outside diameter (A36) liner with a safety factor of 1.3 	Pa. If the inside diameter of the liner must ecessary to achieve a liner safety factor of er designed for an allowable stress of 25 is 8 m. Determine the thickness of a steel 5 and allowable stress of 248 MPa in ame load but allow for a greater inside	4+6	C02			
Q 8	Consider a vertical shaft excavated in a stree 2 MPa and S_H (east) = 8.5 MPa and a join with cohesion $c_j = 0.95$ MPa and friction an axis due east parallel with S_H . Determine jo	ess field where $S_v = 9.5$ MPa, S_h (north) = nt set that strikes due north and dips 60° ngle $\varphi_j = 35^\circ$. For convenience, fix the x-	10	CO4			

	excavation and the improvement that a bolting plan could achieve. Assume bolts are installed horizontally on a square pattern of 1 m centers and tensioned to 82.3 kN force.		
Q 9	 Describe in details the design of sublevel caving layouts in mining? OR (a) Caving rock is estimated to have zero cohesion and a friction angle of 35°. If draw points are spaced on 20 m centers and are 3.5 m wide, determine the height of the dead zone between draw points. (b) A chimney cave forms over a square excavation of side length L and height h. The caved zone above the chimney is a cylinder of height H and forms an inscribed circular cross section. If the bulking porosity is B, determine the height of caved zone extend above the excavation? Assume B = 0.01 and h = 5 m. 	10 5+5	CO5
	SECTION-C		
Q 10	A simple plane truss is made up of the identical bars with young's modulus (E), Area (A) and Length (L) and loaded as shown in the figure. Determine the following (i) Displacement of node 2 (ii) Stress in each bar $ \int_{1}^{3} \frac{45^{\circ}}{45^{\circ}} \frac{P_{2}}{P_{1}} $ For the three bar truss shown in the figure determine the nodal displacements and the stress in each member. Take modulus of elasticity as 200 GPa. $ \int_{1}^{150 \text{ MN}} $	10+10 20	CO3
Q 11	Explain in detail the following monitoring systems of rock mass performance with neat sketch	10+10	
	(i) Hydraulic pressure cells (ii) Multiple-point borehole extensometers		CO6

Name:		PES	
Enrolment No:			
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES		
	End Semester Examination, May 2019		
Course Course	mme: B. Tech (Mining Engineering) : Applied Rock Mechanics and Numerical Modeling Code: GSEG 329 ctions: All questions are compulsory	Semester: Time: 03 h Max. Mark	rs
	SECTION A		
S. No.		Marks	CO
Q 1	Write the parameters used for the determination of Rock Mass Rating (RMR) of the rock.	4	CO1
Q 2	Write any four-pillar strength equations used for the design of the coal pillars?	4	CO2
Q 3	Define the following: (i) Angle of draw (ii) Angle of full subsidence	2+2	CO4
Q 4	Define the following caving in mining (i) Sub-level Caving (ii) Block Caving	4	CO5
Q 5	Discuss in brief the monitoring system of rock mass performance in mining?	4	CO6
	SECTION B	1	L
Q 6	Write a detailed note on rock mass quality (Q) system of rock mass classifications?	10	CO1
Q 7	 A 2.5 m thick horizontal orebody is located at a depth of 80 m, with the rock cover having the unit weight of 25 kN/m3. An initial mining layout is based on 6.0 m room span and 5.0 m square pillars, determine the following: (i) Pre-mining Stress (ii) Average axial pillar stress (iii) Pillar Strength (iv) Factor of safety 	2.5+2.5+2.5 +2.5	CO2
Q 8	Write a detailed note on the following subsidence monitoring methods(i) Surface Instrumentations(ii) Spacing of Monuments	5+5	CO4
Q 9	Describe in details the design of block caving layouts in mining?	10	CO5
	OR		
	 (a) Caving rock is estimated to have zero cohesion and a friction angle of 35°. If draw points are spaced on 25 m centers and are 4 m wide, determine the height of the dead zone between draw points. (b) A chimney cave forms over a square excavation of side length L and height h. The caved zone above the chimney is a cylinder of height H and forms an inscribed circular cross section. If the bulking porosity is B, determine the 	5+5	

SET B

	height of caved zone extend above the excavation? Assume $B = 0.02$ and $h = 7$		
	m.		
	SECTION-C		
Q 10	(a)Write down the formula of the stiffness matrix for the following: (i) Bar Element (ii) Truss Element (b) Find the stress in the two bars assembly, which is loaded with force P, and constrained at the two ends, as shown in the figure. $ \begin{array}{c} 1 & 2A,E & 2A,E \\ \hline 1 & 2 & P & 3 \\ \hline & L & L \\ \hline & OR \end{array} $ A simple plane truss is made up of the identical bars with young's modulus (E), Area (A) and Length (L) and loaded as shown in the figure. Determine the following (iii) Displacement of node 2 (iv) Stress in each bar	4+16	CO3
	$\begin{array}{c} (1) \text{Success in calculation} \\ 3 \\ 45^{\circ} \\ Y \\ 1 \\ 45^{\circ} \\ X \end{array}$	20	
Q 11	Explain in detail the following monitoring systems of rock mass performance with neat sketch (i) Hydraulic pressure cells (ii) Multiple-point borehole extensometers	10+10	CO6