Name: Enrolm	e: Iment No:			
	UNIVERSITY OF PETROLEUM AND ENERGY STU	DIES		
End Semester Examination, May 2019 Programme Name: BT-EL Semester Course Name : Linear Integrated Circuits Time Course Code : ECEG 2008 Max. Max. Max. Max. Max. Max. Max. Max.			: 02 hrs	
1	SECTION A			
S. No.		Marks	СО	
	$V_a = 1V$ and $V_b = 2V$.	5	CO2	
Q2.	Discuss why Schmitt trigger is also known as square wave generator.	5	CO1	
Q3.	With neat block diagram, explain the operation of 8-bit successive approximati register type ADC. What is the maximum conversion time for this type of ADC.	on 5	CO2	

Q4.	Write short notes on virtual ground concept.	5	CO1
	SECTION B		1
Q5.	Show that the High pass RC network performs filtering and op-amp provides amplification?	10	CO2
Q6.	A regenerative comparator (Schmitt Trigger) circuit is shown in Figure 2. Derive expressions for upper threshold and lower threshold voltages, V_{UT} and V_{LT} respectively and hence the value of hysteresis voltage V_{H} . Calculate V_{UT} , V_{LT} , V_{H} for the given values of $R_1 = 54 \text{ k}\Omega$ and $R_2 = 2 \text{ k}\Omega$. 15 V 15 V 15	10	CO3
Q7.	Figure 2 A sine wave with 4 V peak-to-peak amplitude and 2 kHz frequency is applied at the input of the circuit. Plot the input and output waveforms. Vcc = + 15 V Vi + ISV Vi + ISV Vi + ISV R_1 R_2	10	CO3
Q8.	Figure 3A circuit whose output does not have any stable state and the Output has two Quasi- Stable states using op-amp to produce a square wave output where output keeps on changing its own from 1state to another state and Vice Versa. Design the circuit for above mentioned specifications.	10	CO3

	SECTION-C		
Q9	 An astable multivibrator flashes the electric bulb such that its ON time will be 5 seconds and off time will be 3 seconds. Design the circuit diagram for the above mentioned specifications calculating: Values for R_A and R_B. Assuming the value of capacitance in µF. 	20	CO4
Q10	Design a timer, which should turn ON heater immediately after pressing a push button and should hold heater in 'ON-state' for 10 seconds.	20	CO4

Name:

Enrolment No:

UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2019

Programme Name: BT-EL

Course Name: Linear Integrated CircuitsCourse Code: ECEG 2008Nos. of page(s):02

Semester : IV Time : 02 hrs Max. Marks : 100

Instructions:

All questions are compulsory.

SECTION A

S. No.		Marks	СО
Q1.	A 555 timer is configured to run in astable mode with $R_A = 4k\Omega$, $R_B = 4k\Omega$ and C=0.01µF. Determine the frequency of the output and duty cycle.	5	CO2
Q2.	Discuss why Astable Multivibrator is also known as square wave generator.	5	CO1
Q3.	An op-amp has dc gain of 10^4 and a gain of 500 at a frequency of 1kHz. Calculate its break frequency and UGB (Unity Gain Bandwidth).	5	CO2
Q4.	Figure 1 shows the output voltage of an op-amp in response to the step input. Find the slew rate.	5	CO1
	Figure 1		
	SECTION B		
Q5.	With neat block diagram, explain the operation of 8-bit successive approximation register type ADC.	10	CO3
Q6.	A regenerative comparator (Schmitt Trigger) circuit is shown in Figure 2	10	CO3

	Derive expressions for upper threshold and lower threshold voltages, V_{UT} and V_{LT}		
	respectively and hence the value of hysteresis voltage V_H . Calculate V_{UT} , V_{LT} , V_H for		
	the given values of $R_1 = 54 \text{ k}\Omega$ and $R_2 = 4 \text{ k}\Omega$.		
	$v_{i} \stackrel{+}{=} \stackrel{-15 \text{ V}}{\underset{=}{\overset{\circ}{}}} R_{1}$		
	Figure 2		
Q7.	Design a RC phase shift FET oscillators defining condition for sustained oscillations.	10	CO3
Q8.	Design a circuit using op-amp to produce a square wave whose output has one stable state and one quasi-stable state where circuit generates pulse output if trigger input is applied.	10	CO3
	SECTION-C		
Q9	 Design a circuit diagram of an astable multivibrator to generate the output signal with frequency of 1kHz and the duty cycle of 75%. The design process should have (i) Well labelled waveforms (ii) Value of R_A & R_B. Assuming the value of capacitance in µF. 	20	CO4
Q10	Design a 555 timer based square wave generator to produce a symmetrical square wave of 1kHz. If $V_{cc} = 12V$, draw the voltage across timing capacitor and the output.	20	CO4