LUPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2019

Program Name: B-Tech ME (Core and specialization)
Course Name: Operations Research
Course Code: IPEG452

Semester: VI
Time: 03 hrs
Max. Marks: 100

Nos. of page(s): 5
Instructions: If data is insufficient, make relevant assumptions and state the same. Graph sheet and statistical table shall be supplied to students on request.

SECTION A (60 marks)

Sl. No.		Marks	CO
Q1	i. If there are ' n ' jobs and ' m ' machines, there will be \qquad sequences of doing the jobs. (a) $\mathrm{n} \times \mathrm{m}$, (b) $m \times n$, (c) n^{m}, (d) $(\mathrm{n}!)^{m}$ ii. The following is one of the assumptions made while sequencing ' n ' jobs on 2 machines (a) Two jobs must be loaded at a time on any machine, (b) Jobs are to be done alternatively on each machine, (c) The order of completing the jobs has high significance, (d) Each job once started on a machine is to be performed up to completion on that machine iii. In the matrix of a game given below the negative entries are: (a) Payments from A to B (b) Payments from B to A (c) Payment from players to organisers (d) Payment to players from organisers. iv. When there is dominance in a game then (a) Least of the row \geq highest of another row, (b) Least of the row \leq highest of another row, (c) Every element of a row \geq corresponding element of another row, (d) Every element of the row \leq corresponding element of another row v. A steady state exists in a queue if:	10x1=10	CO1

	(a) $\lambda>\mu$, (b) $\lambda<\mu$, (c) $\lambda=\mu$, (d) $\lambda=\mu$. vi. In queue designation $\mathrm{A} / \mathrm{B} / \mathrm{S}:(\mathrm{d} / \mathrm{f})$, what does S represent? (a) Arrival Pattern, (b) Service Pattern (c) Number of service channels, (d) Capacity of the system. vii. As per queue discipline the following is not a negative behavior of a customer: (a) Balking, (b) Reneging, (c) Boarding, (d) Collusion viii. If two jobs J1 and J2 have same minimum process time under first machine but processing time of J 1 is less than that of J 2 under second machine, then J 1 occupies (a) First available place from the left, (b) Second available place from the left, (c) First available place from the right, (d) Second available place from the right ix. The total number of allocation in a basic feasible solution of transportation problem of $\mathrm{m} \times \mathrm{n}$ size is equal to (a) $\mathrm{m} \times \mathrm{n},(\mathrm{b})(\mathrm{m} / \mathrm{n})-1$, (c) $\mathrm{m}+\mathrm{n}+1$ (d) $\mathrm{m}+\mathrm{n}-1$. x. If Dual has a solution, then the primal will (a) Not have a solution, (b) Have only basic feasible solution, (c) Have a solution (d) None of the above		
Q 2	i. Define Total float and free float. What is the significance of calculating floats in project management? ii. Calculate the total float and free float of the non-critical activities in the following network	$5 \times 2=10$	$\begin{aligned} & \mathrm{CO} 1 \\ & \mathrm{CO} 2 \end{aligned}$
Q 3	A manager has 4 jobs on hand to be assigned to 3 of his clerical staff. Clerical staff differs in efficiency. The efficiency is a measure of time taken by them to do various jobs. The manager wants to assign the duty to his staff, so that the total time taken by the staff should be minimum. The matrix given below shows the time taken by each person to do a particular job. Help the manager in assigning the jobs to the personnel.	10	CO3

(Solve any TWO questions)

Q 7 A machine operator has to perform three operations, namely plane turning, step turning and taper turning on a number of different jobs. The time required to perform these operations in minutes for each operating for each job is given in the matrix given below. Find the optimal sequence, which minimizes the time required.

Job.	Time for plane turning In minutes	Time for step turning in minutes	Time for taper turning. in minutes.
1	3	8	13
2	12	6	14
3	5	4	9
4	2	6	12
5	9	3	8
6	11	1	13

The estimates of time in weeks of the activities of a project are as follows:

Activity	Predecessor Activity	Optimistic estimate of time	Most likely estimate of time	Pessimistic estimate of time	
A	-	2	4	6	
B	A	8	11	20	
C	A	10	15	20	
D	B	12	18	24	
E	C	8	13	24	
F	C	4	7	16	
G	D,F	14	18	28	
H	E	10	12	14	
I	G,H	7	10	19	

i. Determine the critical activities and the project completion time using PERT.
ii. Calculate event, total, free and independent floats for all activities.

A glass factory specializing in crystal is developing a substantial backlog and the firm's management is considering three courses of action: $\left(\mathrm{S}_{1}\right)$ arrange for sub-contracting, $\left(\mathrm{S}_{2}\right)$ construct new facilities. The correct choice depends largely upon future demand which may be low, medium, or high. By consensus, management ranks the respective

Name:	upES
Enrolment No:	

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2019

Program Name: B-Tech ME (Core and specialization)
Course Name: Operations Research
Course Code: IPEG452

Semester: VI
Time: 03 hrs
Max. Marks: 100

Nos. of page(s): 5
Instructions: If data is insufficient, make relevant assumptions and state the same. Graph sheet and statistical table shall be supplied to students on request.

SECTION A (60 marks)

$\begin{aligned} & \hline \text { Sl. } \\ & \text { No. } \end{aligned}$				
Q1	i. If the value of the game is zero, then the game is (a) Fair strategy, (b) Pure strategy, (c) Pure gam ii. For the payoff matrix the player A always uses:			
	A		I	II
			-5	-2
		II	10	5

(a) First strategy
(b) Mixed strategy of both II and I
(c) Does not play game
(d) Second strategy.
iii. Traffic intensity is given by:
(a) Mean arrival rate / Mean service rate,
(b) $\lambda \times \mu$,
(c) μ / λ,
(d) Number present in the queue/Number served
iv. To solve degeneracy in the transportation problem we have to:
(a) Put allocation in one of the empty cells as zero, (b) Put a small element epsilon in any one of the empty cells, (c) Allocate the smallest element epsilon in such a cell, which will not form a closed loop with other loaded cells, (d) Allocate the smallest element epsilon in such a cell, which will form a closed loop with other loaded cells
v. In Hungarian method of solving assignment problem, the row opportunity cost matrix is obtained by:
(a) Dividing each row by the elements of the row above it,
(b) Subtracting the elements of the row from the elements of the row above it,
(c) Subtracting the smallest element from all other elements of the row,
(d) Subtracting all the elements of the row from the highest element in the

Marks	CO

matrix.
vi. To convert \leq type of inequality into equations, we have to
(a) Assume them to be equations,
(b) Add surplus variables,
(c) Subtract slack variables.
(d) Add slack variables.
vii. To convert ' n ' jobs and 3-machine problem into ' n ' jobs and 2-machine problem, the following rule must be satisfied.
(a) All the processing time on second machine must be same.
(b) The maximum processing time of 2 nd machine must be \leq to minimum processing times of first and third machine.
(c) The maximum processing time of 1 st machine must be \leq to minimum processing time of other two machines.
(d) The minimum processing time of 2 nd machine must be \leq to minimum processing times of first and third machine
viii. The assignment problem will have alternate solutions
(a) when total opportunity cost matrix has at least one zero in each row and column, (b) When all rows have two zeros,
(c) When there is a tie between zero opportunity cost cells,
(d) If two diagonal elements are zeros
ix. As per queue discipline the following is not a negative behavior of a customer:
(a) Balking, (b) Reneging, (c) Boarding, (d) Collusion
x. When the operating characteristics of the queue system is dependent on time, it is said to be: (a) Steady state, (b) Explosive state, (c) Transient state, (d) Any one of the above

Q 2	Job	A	B	C	D	E	F	G	10	CO2
	Machine M_{1}	3	8	7	4	9	8	7		
	Machine M_{2}	4	3	2	5	1	4	3		
	Machine M_{3}	6	7	5	11	5	6	12		
	Determine the optimal sequence of jobs that minimizes the total elapsed time bases on the following information processing time on machines is given in hours and passing is not allowed:									
Q 3	A manager has 4 jobs on hand to be assigned to 3 of his clerical staff. Clerical staff differs in efficiency. The efficiency is a measure of time taken by them to do various jobs. The manager wants to assign the duty to his staff, so that the total time taken by the staff should be minimum. The matrix given below shows the time taken by each person to do a particular job. Help the manager in assigning the jobs to the personnel.								10	CO3

		Jobs.	Men (time taken to do job in hours).								
			X		Y	Z					
		A	10		27	16					
		B	14		28	7					
		C	36		21	16					
		D	19		31	21					
Q4	A and B play a game in which each has three coins, a 5 paise, 10 paise and 20 paise coins. Each player selects a coin without the knowledge of the other's choice. If the sum of the coins is an odd amount, A wins B's coins. If the sum is even, B wins A's coins. Find the optimal strategies for the players and the value of the game.									10	CO4
Q5	A company is interested in manufacturing of two products A and B. A single unit of Product A requires 2.4 minutes of punch press time and 5 minutes of assembly time. The profit for product A is Rs. 6/- per unit. A single unit of product B requires 3 minutes of punch press time and 2.5 minutes of welding time. The profit per unit of product B is Rs. 7/-. The capacity of punch press department available for these products is 1,200 minutes per week. The welding department has idle capacity of 600 minutes per week; the assembly department can supply 1500 minutes of capacity per week. Determine the quantity of product A and the quantity of product B to be produced to that the total profit will be maximized.									10	CO4
Q6	The automobile company manufactures around 150 scooters. The daily production varies from 146 to 154 depending upon the availability of raw materials and other working conditions:									10	
	Produc tion (per day)	146	47	148	149	150	151	152	153		
	Probab ility	0.04	$.09$	0.12	0.14	0.11	0.10	0.20	0.12		$\begin{aligned} & \mathrm{CO} 3 \\ & \mathrm{CO} 4 \end{aligned}$
	The finis accommo 80, 81, Simulate (i) W (ii) W	shed scoo dating 150 76, 75, the process hat will be hat will be	ers are cooters 64, to find 0 he avera he avera	tra Using 43, out: age nu age nu	orted llowin 8, 26 er of er of	a andom 10, ters ty sp	cially mber 68 ing in on th	ranged 69, 6 facto ry?	orry 57.		

SECTION B (40 Marks) (Solve any TWO questions)								
Q7	A machine operator choose a sequence on the machine and If he proces sequence th	sses t-up A ∞ 4 7 3 4	cof cos B 4 ∞ 6 3 4 on	his nge to the To ite	ch th tab D 3 3 7 ∞ 7 eek	must sently uld he	20	$\begin{aligned} & \mathrm{CO} 3 \\ & \mathrm{CO} 4 \end{aligned}$
Q8	For the project represented by the network shown in the figure, the estimates ($\mathrm{a}, \mathrm{m}, \mathrm{b}$) are listed in the table. Determine the project completion time and determine the probability of completing the project with a maximum 10% delay from the estimated project completion time.						20	$\begin{aligned} & \mathrm{CO} 3 \\ & \mathrm{CO} 4 \end{aligned}$

Q9	A large steel manufacturing company has three options with regard to production: (i) produce commercially (ii) build pilot plat (iii) stop producing steel. The management has estimated that their pilot plant, if built, has 0.8 chance of high yield and 0.2 chance of low yield. If the pilot plant does show a high yield, management assigns a probability of 0.75 that the commercial plant will also have a high yield. If the pilot plant shows a low yield, there is only a 0.1 chance that the commercial plant will show a high yield. Finally, management's best assessment of the yield on a commercial-size plant without building a pilot plant first has a 0.6 chance of high yield. A pilot plant will cost Rs. 3,00,000. The profits earned under high and low yield conditions are Rs. $1,20,00,000$ and Rs. 12,00,000 respectively. Find the optimum decision for the company.	$\mathbf{2 0}$	$\mathbf{C O 3}$

