Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2019

Programme Name:		B.Tech ASEA	
Course Name	:	Microwave Engineering	
Course Code	:	ELEG415	
Nos. of page(s)	:	01	
Instructions. Ad	+	t all quastions All Quastian	

Semester	: VI
Time	: 03 hrs
Max. Marks	: 100

Instructions: Attempt all questions. All Questions are compulsory. SECTION A

S. No.		Maulta	CO
		Marks	CO
1.	A rectangular waveguide with dimension of 3 cm x 2 cm operates in the TM_{10} mode at 10 GHz. Determine the characteristics wave impedances.		
2.	A 20 mW signal is fed into port 1 of a lossless directional complex of coupling coefficient 20dB & directivity 50 dB. Find the power at the output port i.e at port1.		
3.	Derive the Scattering matrix for E-plane Tee.	5	CO2
4.	Explain the Gunn's effect using the two valley theory (RWH).	5	CO4
	SECTION B		
5.	Explain the double minimum method of measuring VSWR.		C05
6.	A TWT operates under the following parameters: $I_0=50mA$ Beam current: $V_0=2.5 kV$ Beam Voltage: $V_0=2.5 kV$ Characteristic impedance of helix: $Z_0=6.75 \Omega$ Circuit Length: $N=45$ Frequency: $f=8 GHz$ Determine:a. The gain parameter C.b. The output power gain A_P in dB.c. All the four propagation constants.	10	CO3
7.	What are Crossfield devices? Derive an expression for the Hull cutoff magnetic flux density of cylindrical cavity magnetron.		CO4
8.	Name microwave devices, which make use of Faraday rotation. Explain the construction and working of any one of them.		CO2
	SECTION-C		
9.	With a neat diagram of TRAPATT diode, explain the principle of operation with neat figures. Avalanche zone velocity of a TRAPATT diode has following parameters: Doping concentration NA = 2.1015 cm-3, current density J = 20 KA/cm ² . Calculate the avalanche-zone velocity. Assume that the equation of velocity modulation of the an electron at the time, t ₁ when electron leaving the buncher cavity gap is $v(t_1)=v_0\dot{c}$]		CO4
10.	With a neat diagram explain the working of two-cavity klystron amplifier and derive expression for the efficiency of above amplifier starting from basic principles. Or Write in brief, what is transferred electron effect? In which type of material it is present? Explain the principle of construction, function of IMPATT diode, and list their applications.	20	CO3

Name: Enrolment No:				
		→ OLEUM AND ENERGY STUDIE • Examination, May 2019	S	
Course Course Nos. of	mme Name: B.Tech ASEA Name : Microwave Engineering	Semester Time Max. Mark	: VI : 03 hr s : 100	°S
		SECTION A		
S. No.			Marks	CO
1.	What are the limitations of conventional tube	es at microwave frequencies?	5	CO1
2.	2. Differentiate between two cavity klystron and reflex Klystron.		5	CO3
3.	3. Spell out the following abbreviated terms: IMPATT, TRAPATT BARITT, LSA, InP and CdTe.		5	CO2
4.	How are microwave measurement techniques	s different from low frequency measurement?	5	CO4
		SECTION B		
5.	5. Double minimum method is used to determine the VSWR value on a waveguide. If the separation between the two adjacent minima in 3.5 cm & that between twice of minimum power points is 2.5 mm. Determine the value of VSWR.		10	CO5
6.				CO3
7.				CO4
8.	Name microwave devices, which make use o working of any one of them.	f Faraday rotation. Explain the construction and	10	CO2
		SECTION-C		
9.		It off voltage for cylindrical magnetron. has the following operating parameters. Anode = 27 A, Magnetic flux density $Bo = 0.336 \text{ wb/m}^2$.	20	CO4
10.	 Write in brief, what is transferred electron effare the typical characteristics of Gunn diode Draw a neat diagram of TRAPATT diode; ex Avalanche zone velocity of a TRAPATT dio 	fect? In which type of material it is present? What and explain its working as oscillator. or splain the principle of operation with neat figures. de has following parameters. Doping concentration A/cm2. Calculate the avalanche-zone velocity.	20	C03