Roll No:

Roll No:			
L)UPES			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES			
End Semester Examination, May 2019			
Programme: BSc (Hons) Mathematics Semester - II			
Cou	Name: Differential Equations Max. Marks : 100		
Course Code: MATH 1031 Duration : 3 Hrs			
No. of page/s:2			
Section A(Attempt all questions)			
1.	Investigate the behavior of the solution of differential equation $\frac{d x}{d t}=\frac{-1}{10}\left(x^{2}-10 x+9\right) ; x(0)=x_{0}$.	[4]	CO4
2.	Solve $\frac{d y}{d x}+\sec x y=\tan x$	[4]	CO2
3.	Find an integrating factor of the differential equation $\left(x y^{2}-e^{\frac{1}{x^{3}}}\right) d x-x^{2} y d y=0$	[4]	CO2
4.	Find the nature of solution of the differential equation $\frac{d y}{d x}=\frac{x^{2}}{1+y^{2}}$	[4]	CO1
5.	Let $f(D) y=e^{a x}$ be a linear $n^{t h}$ order differential equation then show that the particular integral $\frac{1}{f(D)} e^{a x}=\frac{1}{f(a)} e^{a x}$ provided $f(a) \neq 0$.	[4]	CO3
SECTION B (All questions are compulsory, Q10 has internal choice)			
6.	Find the equilibrium solutions of the autonomous equation $y^{\prime}=y^{2}\left(1-y^{2}\right)$ and hence determine their stability.	[08]	CO5
7.	A lake of constant volume V contains at time t an amount $M(t)$ of pollutant evenly distributed throughout the lake. Suppose water-containing concentration $c(t)$ of pollutant enters the lake at a rate F and water leaves the lake at the same rate. Find a differential equation that models this process and determine the concentration of pollutant with $c(0)=c_{0}$.	[08]	CO4
8.	Solve $x\left(x^{2}+1\right) \frac{d y}{d x}=y\left(1-x^{2}\right)+x^{3} \log _{e} x$	[08]	CO2

9.	Explain some characteristics of mathematical models.	[08]	CO 4
10.	Solve $\frac{d^{2} y}{d x^{2}}+a^{2} y=x \cos (a x)$ OR Solve $\left(D^{4}+2 D^{2}+1\right) y=x^{2} \cos x$	[08]	CO3
SECTION C(Q11 is compulsory and Q12A, Q12B have internal choice			
$\begin{gathered} 11 . \\ \mathrm{A} \end{gathered}$	Consider the following system: $x^{\prime}=-2 x-y-2 z ; y^{\prime}=-4 x-5 y+2 z ; z^{\prime}=-5 x-y+z$ Determine the stability of the equilibrium point the origin.	[10]	CO5
11.B	Solve the Cauchy-Euler equation $x^{3} \frac{d^{3} y}{d x^{3}}-x^{2} \frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}-2 y=x^{3}+3 x$	[10]	CO3
$\begin{gathered} 12 . \\ \mathrm{A} \end{gathered}$	Consider the differential equation $y=2 p x-p^{2}$ where $p=\frac{d y}{d x}$ (i) Find a one-parameter family of solutions (ii) Find an extra solution (if exists) that is not a member of the one-parameter family found in part (i). OR Find the general solution and singular solution (if exists) of the differential equation $p^{3}-4 x y p+8 y^{2}=0 \text { where } p=\frac{d y}{d x}$	[10]	CO2
12.B	Solve $y^{\prime \prime}+y=4 x+10 \sin (x)$ using method of undetermined coefficients. OR Solve $y^{\prime \prime}-4 y^{\prime}+4 y=(x+1) e^{2 x}$ using variation of parameters method.	[10]	CO3

Roll No:

\qquad

UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2019
Programme: BSc (Hons) Mathematics
Semester - II
Course Name: Differential Equations
Course Code: MATH 1031
Max. Marks : 100
Duration : 3 Hrs
No. of page/s: 2

Section A
 (Attempt all questions)

MARKS			
1.	Investigate the behavior of the solution of differential equation $\frac{d y}{d x}=r y$.	[4]	CO4
2.	Solve $\frac{d y}{d x}=y \tan x-2 \sin x$.	[4]	CO2
3.	Find an integrating factor of $\left(y+\frac{y^{3}}{3}+\frac{x^{2}}{2}\right) d x+\left(\frac{x}{4}+\frac{x y^{2}}{4}\right) d y=0$.	[4]	CO2
4.	Find the nature of solution of the differential equation $\frac{d y}{d x}=\frac{y+\sqrt{x^{2}+y^{2}}}{x}$	[4]	CO1
5.	Let $f(D) y=\sin (a x)$ be a linear $n^{\text {th }}$ order differential equation then show that the particular integral $\frac{1}{f\left(D^{2}\right)} \sin (a x)=\frac{1}{f\left(-a^{2}\right)} \sin (a x)$ provided $f\left(-a^{2}\right) \neq 0$.	[4]	CO3

SECTION B

(All questions are compulsory, Q10 has internal choice)

| 6. | Find the equilibrium solutions of the autonomous equation $y^{\prime}=\left(y^{5}-4 y^{3}+y^{2}-4\right)$ and
 hence determine their stability. | [08] | CO5 |
| :---: | :--- | :--- | :--- | :--- |
| 7. | Develop a model based on the following assumptions and hence determine the population
 size with $x(0)=x_{0}$. | | |
| i. \quadAssume that the populations are sufficiently large so that we can ignore random
 differences between individuals | [08] | CO4 | |
| ii. Assume that births and deaths are continuous in time
 iii. Assume that per-capita birth and death rates are constant in time
 iv. Ignore immigration and emigration | | | |

8.	Solve $\frac{d y}{d x}+\frac{y}{\left(1-x^{2}\right)^{\frac{3}{2}}}=\frac{x+\sqrt{1-x^{2}}}{\left(1-x^{2}\right)^{2}}$	[08]	CO2
9.	Explain some classifications of mathematical models.	[08]	CO 4
10.	Solve $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y=3 x^{2} e^{2 x} \sin (2 x)$ OR Solve $\left(D^{4}-1\right) y=x \sin x$	[08]	CO3
SECTION C(Q11 is compulsory and Q12A, Q12B have internal choice			
$\begin{gathered} 11 . \\ \mathrm{A} \end{gathered}$	Consider the following system: $x^{\prime}=x-2 y+2 z ; y^{\prime}=-4 x+3 y+2 z ; z^{\prime}=4 x-2 y-z$ Determine the stability of the equilibrium point the origin.	[10]	CO5
11.B	Solve the Cauchy-Euler equation $x^{3} \frac{d^{3} y}{d x^{3}}+2 x^{2} \frac{d^{2} y}{d x^{2}}+2 y=10\left(x+\frac{1}{x}\right)$	[10]	CO3
$\begin{gathered} 12 . \\ \mathrm{A} \end{gathered}$	Consider the differential equation $y=2 p x+p^{4} x^{2}$ where $p=\frac{d y}{d x}$ (i) Find a one-parameter family of solutions (ii) Find an extra solution (if exists) that is not a member of the one-parameter family found in part (i). OR Find the general solution and singular solution (if exists) of the differential equation $p^{2} x(x-2)+p(2 y-2 x y-x+2)+y^{2}+y=0 \text { where } p=\frac{d y}{d x} .$	[10]	CO2
12.B	Solve $y^{\prime \prime}-2 y^{\prime}-3 y=4 x-5+6 x e^{2 x}$ using method of undetermined coefficients. OR Solve $4 y^{\prime \prime}+36 y=\operatorname{cosec}(3 x)$ using variation of parameters method.	[10]	CO 3

