	Roll No:						
U	UPES						
End S	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019 Programme: BSc (Hons) Mathematics Semester – II						
Course Name: Differential EquationsMax. Marks: 100Course Code: MATH 1031Duration: 3 HrsNo. of page/s:2							
	Section A						
	(Attempt all questions) MARKS						
1.	Investigate the behavior of the solution of differential equation $\frac{dx}{dt} = \frac{-1}{10} (x^2 - 10x + 9); x(0) = x_0.$	[4]	CO4				
2.	Solve $\frac{dy}{dx}$ + secx y=tanx	[4]	CO2				
3.	Find an integrating factor of the differential equation $\left(x y^2 - e^{\frac{1}{x^3}}\right) dx - x^2 y dy = 0$	[4]	CO2				
4.	Find the nature of solution of the differential equation $\frac{dy}{dx} = \frac{x^2}{1+y^2}$	[4]	CO1				
5.	Let $f(D)y = e^{ax}$ be a linear n^{th} order differential equation then show that the particular integral $\frac{1}{f(D)}e^{ax} = \frac{1}{f(a)}e^{ax}$ provided $f(a) \neq 0$.	[4]	CO3				
	f(D) = f(a) = f(a)						
	SECTION B (All questions are compulsory, Q10 has internal choice)						
6.	Find the equilibrium solutions of the autonomous equation $y' = y^2(1-y^2)$ and hence determine their stability.	[08]	CO5				
7.	A lake of constant volume V contains at time tan amount $M(t)$ of pollutant evenly distributed throughout the lake. Suppose water-containing concentration $c(t)$ of pollutant enters the lake at a rate F and water leaves the lake at the same rate. Find a differential equation that models this process and determine the concentration of pollutant with $c(0)=c_0$.	[08]	CO4				
8.	Solve $x(x^2+1)\frac{dy}{dx} = y(1-x^2) + x^3 \log_e x$	[08]	CO2				

9.	Explain some characteristics of mathematical models.	[08]	CO4		
	Solve $\frac{d^2 y}{dx^2} + a^2 y = x \cos(ax)$	[08]	CO3		
10.	OR				
	Solve $(D^4 + 2D^2 + 1)y = x^2 cosx$				
	SECTION C (Q11 is compulsory and Q12A, Q12B have internal choice				
	Consider the following system:				
11. A	x'=-2x-y-2z; y'=-4x-5y+2z; z'=-5x-y+z	[10]	CO5		
A	Determine the stability of the equilibrium point the origin.				
11.B	Solve the Cauchy-Euler equation $x^3 \frac{d^3 y}{dx^3} - x^2 \frac{d^2 y}{dx^2} + 2x \frac{dy}{dx} - 2y = x^3 + 3x$	[10]	CO3		
	Consider the differential equation $y=2 px - p^2$ where $p=\frac{dy}{dx}$				
	(i) Find a one-parameter family of solutions				
	(ii) Find an extra solution (if exists) that is not a member of the one-parameter family found in part (i).				
12. A	OR	[10]	CO2		
	Find the general solution and singular solution (if exists) of the differential equation				
	$p^3 - 4xyp + 8y^2 = 0$ where $p = \frac{dy}{dx}$.				
12.B	Solve $y'' + y = 4x + 10 \sin(x)$ using method of undetermined coefficients.				
	OR	[10]	CO3		
	Solve $y''-4y+4y=(x+1)e^{2x}$ using variation of parameters method.				

	Roll No:					
U	UPES					
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019						
Cours Cours	Programme: BSc (Hons) MathematicsSemester – IICourse Name: Differential EquationsMax. Marks : 100Course Code: MATH 1031Duration : 3 HrsNo. of page/s:2					
	Section A					
	(Attempt all questions)	MARK	S			
1.	Investigate the behavior of the solution of differential equation $\frac{dy}{dx} = ry$.	[4]	CO4			
2.	Solve $\frac{dy}{dx} = y \tan x - 2 \sin x$.	[4]	CO2			
3.	Find an integrating factor of $\left(y + \frac{y^3}{3} + \frac{x^2}{2}\right) dx + \left(\frac{x}{4} + \frac{xy^2}{4}\right) dy = 0.$	[4]	CO2			
4.	Find the nature of solution of the differential equation $\frac{dy}{dx} = \frac{y + \sqrt{x^2 + y^2}}{x}$	[4]	CO1			
	Let $f(D)y = \sin(ax)$ be a linear n^{th} order differential equation then show that the particular					
5.	integral $\frac{1}{f(D^2)}$ sin $(ax) = \frac{1}{f(-a^2)}$ sin (ax) provided $f(-a^2) \neq 0$.	[4]	CO3			
	SECTION B					
	(All questions are compulsory, Q10 has internal choice)					
6.	Find the equilibrium solutions of the autonomous equation $y' = (y^5 - 4y^3 + y^2 - 4)$ and hence determine their stability.	[08]	CO5			
	Develop a model based on the following assumptions and hence determine the population size with $x(0) = x_0$.					
7.	i. Assume that the populations are sufficiently large so that we can ignore random differences between individuals	[08]	CO4			
	ii. Assume that births and deaths are continuous in time					
	iii. Assume that per-capita birth and death rates are constant in timeiv. Ignore immigration and emigration					

8.	Solve $\frac{dy}{dx} + \frac{y}{(1-x^2)^{\frac{3}{2}}} = \frac{x+\sqrt{1-x^2}}{(1-x^2)^2}$	[08]	CO2	
9.	Explain some classifications of mathematical models.	[08]	CO4	
	Solve $\frac{d^2 y}{dx^2} - 4\frac{dy}{dx} + 4y = 3x^2 e^{2x} \sin(2x)$			
10.	OR	[08]	CO3	
	Solve $(D^4-1)y = x sinx$			
	SECTION C (Q11 is compulsory and Q12A, Q12B have internal choice			
	Consider the following system:			
11. A	x'=x-2y+2z; y'=-4x+3y+2z; z'=4x-2y-z	[10]	CO5	
	Determine the stability of the equilibrium point the origin.			
11.B	Solve the Cauchy-Euler equation $x^3 \frac{d^3 y}{dx^3} + 2x^2 \frac{d^2 y}{dx^2} + 2y = 10\left(x + \frac{1}{x}\right)$ Consider the differential equation $y = 2px + p^4 x^2$ where $p = \frac{dy}{dx}$	[10]	CO3	
	Consider the differential equation $y=2px+p^4x^2$ where $p=\frac{dy}{dx}$			
	(i) Find a one-parameter family of solutions			
10	(ii) Find an extra solution (if exists) that is not a member of the one-parameter family found in part (i).			
12. A	OR	[10]	CO2	
	Find the general solution and singular solution (if exists) of the differential equation			
	$p^{2}x(x-2)+p(2y-2xy-x+2)+y^{2}+y=0$ where $p=\frac{dy}{dx}$.			
12.B	Solve $y''-2y'-3y=4x-5+6xe^{2x}$ using method of undetermined coefficients.			
	OR	[10]	CO3	
	Solve 4 y'' + 36 $y = cosec(3x)$ using variation of parameters method.			

