Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Course: Flow Visualization and Post-Processing Program: M. Tech. CFD Course Code: ASEG 7029

Semester: II Time: 03 hrs. Max. Marks: 100

Instructions: Assume any missing data appropriately

SECTION A	A
-----------	---

S. No.		Marks	CO
Q 1	Define slicing in context to data enrichment. Write down the interpolation functions to evaluate an off node value of a function over a 1D linear, 2D triangular and 3D tetrahedral mesh element.	04	CO1
Q 2	Identify the type of degenerate point for the following tensors. $T = \begin{bmatrix} 1-2x & y \\ y & 1 \end{bmatrix}$; $T = \begin{bmatrix} 1+2x/3 & y \\ y & 1 \end{bmatrix}$; $T = \begin{bmatrix} 1+x & y \\ y & 1-x \end{bmatrix}$	04	CO3
Q 3	Explain the visualization of symmetric tensor field using hyperstreamlines.	04	CO1
Q 4	Sketch the schematic diagram of the Schlieren and Shadowgraph techniques for visualization of flow with variable density.	04	CO2
Q 5	List down the various Ray Traversal Schemes for obtaining pixel intensity through Ray Casting. Give examples for each as well.	04	CO1
	SECTION B		
Q 6	List down the importance of vortex extraction in fluid mechanics. Discuss the following algorithms for extracting vortex core from CFD data a) λ₂ method b) Eigenvector method 	10	СО3
	Compare the ellipsoid, cubical and cylindrical glyphs for visualization anisotropy in visualization. How can these three be combined for an improved visualization of symmetric <i>rate of strain tensor</i> ?		

Q 7	What is ray casting? For a ray cast during volume visualization, derive an expression for the colour intensity on the Image plane obtained by a <i>front-to-back</i> compositing of local and background colours.	10	CO1
Q 8	Consider the CFD simulation of steady state flow over a circular cylinder in ANSYS FLUENT. Write down steps to visualize the following using FLUENT or CFD-Post postprocessor.	10	
	 a. Velocity vectors b. Streamlines c. Pressure distribution over surface d. Contours of pressure e. Separation point on the surface of cylinder 		CO4
Q 9	Illustrate the various components of a typical ASCII Tecplot data file for visualization of a structured CFD simulation data.	10	CO4
	SECTION-C		
	SEC HOIV-C		
	figure below. $B(0, 3)$ $C(0, 0)$ $C(0, 0)$ $A(3, 0)$ The velocities at vertices A, B and C are {2, 2} ^T , {-2, -2} ^T and {-2, 2} ^T respectively. Find the location and behavior of the critical point if one exists. Also, draw the	20	CO3
	representative streamlines. OR		

B_{01} B		
$B_{\theta\theta}$ = 7, $B_{I\theta}$ = 3, $B_{\theta I}$ = 4, B_{II} = 10	l	
Suggest the correct choice of contour for a contour levels of $c = 5$ and $c = 6$. Use asymptotic decider.	1	

Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Course: Flow Visualization and Post-Processing Program: M. Tech. CFD Course Code: ASEG 7029 Semester: II Time: 03 hrs. Max. Marks: 100

Instructions: Assume any missing data appropriately SECTION A

	SECTION A		
S. No.		Marks	СО
Q 1	Explain the visualization of scalars using colour mapping and transfer functions.	04	CO1
Q 2	What are the various types of degenerate points in two dimensional linear tensor field? Illustrate a method to identify these degenerate points.	04	CO3
Q 3	Discuss a strategy for visualization of an asymmetric tensor field by decomposition.	04	CO1
Q 4	Discuss methods to resolve the contouring ambiguity that may arise during isoline generation through marching square algorithm.	04	CO2
Q 5	Discuss various methods to extract the location of shock wave from CFD simulation data of a compressible flow.	04	CO3
	SECTION B		
Q 6	Explain the various algorithms for finding the presence and location of vortex in a fluid flow	10	CO3
Q 7	Explain, using the Phong's Illumination model, the effect of various factors on the intensity of a colour we see perceive.	10	
	OR		CO1
	What is Compositing? Derive an expression for the colour intensity on the Image plane obtained by <i>back-to-front</i> compositing of a ray cast.		
Q 8	Consider the simulation of a laminar flow through a pipe in ANSYS FLUENT. Write down steps to visualize the following primitives using the CFD-Post postprocessor.		
	a. Velocity Vectors	10	CO4
	b. Velocity Magnitude Contoursc. Velocity Profile at the Outlet	10	001
	d. Axial Variation of Pressure		
	e. Skin Friction Coefficient		
Q 9	Illustrate the various components of a typical VTK data file for visualization of	10	CO4

	structured and unstructured CFD simulation data.		
	SECTION-C		
Q 10	Consider the 2-D velocity filed represented on a triangular mesh element as shown in Figure below. $B(0, 2)$ $C(0, 0)$ $A(2, 0)$ The velocities at vertices A, B and C are {1, 1} ^T , {-1, -1} ^T and {1, -1} ^T respectively. Find the location and behavior of the critical point if one exists. Also, draw the	20	СО3
Q 11	representative streamlines. Explain the marching cube algorithm for isosurface generation in detail. Draw all		
	 distinct topological cases for a 3D case. OR a. What are texture-based methods for flow visualization? Explain the Line Integral Convolution method for flow visualization. b. What are the demerits of the original Line Integral Convolution algorithm? Discuss the algorithms with improved performance over the original Line Integral Convolution algorithm. 	20	CO2