

SECTION-C			
Q 9	Calculate the crippling stress, using Euler's formula for a pin-ended 2 m long strut consisting of a tube of 7.5 cm outside diameter and 2.5 cm wall thickness. In compression test, a short length of this tube failed at a load of 315 kN and when tested as a strut with rounded ends, 2 m long, it failed at 174 kN . Find from these data the value of the constant in the Rankine's formula. Take Young's modulus $=20$ $\mathrm{MN} / \mathrm{cm}^{2}$.	20	$\mathrm{CO4}$
Q 10	A beam ABC of length 9 m has one support of the left end and other support at a distance of 6 m from the left end. The beam carries a point load of 1 kN at right end and carries a uniformly distributed load of $4 \mathrm{kN} / \mathrm{m}$ over a length of 3 m as shown in figure. Determine the slop and deflection at point C . At a point in a bracket, the stress on two mutually perpendicular planes are $80 \mathrm{~N} / \mathrm{mm}^{2}$ (tensile) and $40 \mathrm{~N} / \mathrm{mm}^{2}$ (tensile). The shear stress across the planes is $20 \mathrm{~N} / \mathrm{mm}^{2}$. Find using Mohr stress circle, the magnitude and direction of the resultant stress on plane making an angle of 30° with the plane of the first stress. Find also the normal and tangential stresses on this plane. Also, determine the principal stresses and the location of principal planes.	20	$\mathrm{CO4}$

	1 UPES		
Prog Cou Cou Nos. Inst		S	VI 00
	SECTION A		
S. No.	Statement	Mar $\mathbf{k s}$	CO
Q 1	Derive an expression for the stresses induced in case of impact loading.	5	CO1
Q 2	A stepped bar as shown in figure is subjected to an axially applied load of 35 kN . Find the ratio of maximum and minimum stresses produced.	5	CO1
Q	Define a composite bar. Also, explain the method of finding the stresses and load carried by each member of a composite bar.	5	CO2
Q 4	Differentiate between primary shear and secondary shear along with suitable examples.	5	CO2
SECTION B			
Q 5	Draw the shear force and bending moment for the simply supported beam loaded as shown in figure. Also discuss its' salient features.	10	CO2

Q 6	A solid circular shaft transmits 75 kW power at 200 r.p.m. Calculate the shaft diameter, if the twist in shaft is not to exceed 1 degree in 2 m length of the shaft, and shear stress is limited to $50 \mathrm{~N} / \mathrm{mm}^{2}$. Take $\mathrm{G}=1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.	10	CO 3
Q 7	A closed cylindrical vessel made of steel plates 6 mm thick with plane ends, carries fluid under pressure of $2.5 \mathrm{~N} / \mathrm{mm}^{2}$ The diameter of the cylinder is 30 cm and length is 70 cm . Calculate the longitudinal and hoop stresses in the cylinder wall and determine the change in diameter, length and Volume of the cylinder. Take $\mathrm{E}=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and poison's ratio $=0.3$.	10	CO 3
Q 8	A simply supported beam of a square cross-section of the dimensions $250 \mathrm{~mm} \times 250$ mm is loaded as shown in figure. Find the maximum bending stresses developed in the beam. Compare the bending strength of two shafts of same cross-section area, one is circular and other is square in cross-section.	10	CO 2
SECTION-C			
Q 9	A hollow cylindrical cast iron column is 4000 mm long with both the ends fixed. Determine the minimum diameter of the column if it has to carry a safe load of 300 kN with a factor of safety of 4 . Take the internal diameter as 0.65 times the external diameter and compressive stress $=580 \mathrm{~N} / \mathrm{mm}^{2}$ and $\alpha=1 / 1600$.	20	CO4
Q 10	A beam of length 6 m length is loaded as shown in figure. Determine the slop and deflection at point C and D .	20	CO4

