Name:
Enrolment No:

## U UPES

## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

## End Semester Examination, May 2019

Programme Name: B. Sc. (Hons.) Chemistry
Course Name : Physical Chemistry-II
Course Code $:$ CHEM 1006
Nos. of page(s) $: \mathbf{3}$
Instructions: Read all the below mentioned instructions carefully and follow them strictly

1) Write your name and enrollment no. at the top of the question paper.
2) Do not write anything else on the question paper except your name and roll number.
3) Attempt all the parts of a question at one place only.
4) Internal choices are given for question number 9 and 11.
5) $\mathrm{CO} 1, \mathrm{CO} 2, \mathrm{CO}$ \& CO4 in the last column stand for course outcomes and are for official use only.

| SECTION A (Attempt all Five Questions) |  |  |  |
| :---: | :---: | :---: | :---: |
| S. No. |  | Marks | CO |
| Q 1 | Write the names of four colligative properties of the solution. | 4 | CO4 |
| Q 2 | Evaluate the expression of $\left(\frac{\partial U}{\partial V}\right)_{T}$ for the van der Waals gas which obeys the equation of state $P(V-b)=R T$. (Hint $d U=T d S-P d V$ ) | 4 | CO1 |
| Q 3 | What is Trouton's rule? Which of the following liquids: benzene, water and cyclohexane, follow Trouton's rule? Explain with reasoning. | 4 | CO1 |
| Q 4 | An aqueous solution containing 0.25 g of a solute was dissolved in 20 g of water, frozen at $-0.42{ }^{\circ} \mathrm{C}$. Find out the molar mass of the solute. (Heat of fusion of ice at $0^{\circ} \mathrm{C}$ is $334.7 \mathrm{~J} / \mathrm{g}$ and $\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ ) | 4 | CO4 |
| Q 5 | The partial molar volumes of acetone and chloroform in a mixture ( $x_{\text {acetone }}=0.53$ ) was $74.17 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$ and $80.24 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$, respectively. Find out the density of the solution. | 4 | CO 2 |
| SECTION B (Attempt all Questions; internal choice is given for question number 9) |  |  |  |
| Q 6 | (a) Derive the Clausius inequality. <br> (b) For an ideal gas $\overline{C_{p}}=5 / 2 R$. Calculate the change in entropy suffered by 3 mol of the gas on being heated from 300 K to 600 K at <br> (i) constant pressure and (ii) constant volume. | 4+6 | CO1 |
| Q 7 | (a) What are intensive and extensive variables? Classify the following into intensive and extensive variables: <br> (i) enthalpy (ii) molar volume and (iii) heat capacity. <br> (b) Using thermodynamic square find out the Maxwell relation of | 5+5 | CO1 |


|  | (i) $\left(\frac{\partial T}{\partial V}\right)_{S}$ and (ii) $\left(\frac{\partial S}{\partial V}\right)_{T}$ |  |  |
| :---: | :---: | :---: | :---: |
| Q 8 | (a) Given the following information: $\begin{array}{cc} A+B \rightarrow C+D \quad \Delta H^{\circ}=-10.5 \mathrm{~kJ} \\ C+D \rightarrow E & \Delta H^{\circ}=15.0 \mathrm{~kJ} \end{array}$ <br> Calculate the $\Delta H^{\circ}$ for each of the following reactions: <br> (i) $2 C+2 D \rightarrow 2 A+2 B$ <br> (ii) $\quad 2 E \rightarrow 2 A+2 B$ <br> (b) The volume of an aqueous solution of KCl , at $25{ }^{\circ} \mathrm{C}$ was found to obey the relation, $\mathrm{V} / \mathrm{cm}^{3} \mathrm{~kg}^{-1}=1.03+16.62(\mathrm{~m})+1.77(\mathrm{~m})^{3 / 2}+0.12(\mathrm{~m})^{2}$; where " m " is in $\mathrm{mol} / \mathrm{kg}$. Find the partial molar volume of the components at $m=0.1 \mathrm{~mol} \mathrm{~kg}^{-1}$ by explicit differentiation. | 2+8 | $\begin{gathered} \mathrm{CO} 1 \\ \& \\ \mathrm{CO} 2 \end{gathered}$ |
| Q 9 | (a) Calculate the maximum work that can be done by a reversible heat engine operating between 400 and 100 K if 500 J is absorbed at 400 K . <br> OR <br> $\Delta \mathrm{H}_{\text {vaporization }}$ of a substance is $45.7 \mathrm{~kJ} / \mathrm{mol}$, and its normal boiling point is $72.5^{\circ} \mathrm{C}$. Calculate $\Delta \mathrm{S}, \Delta \mathrm{S}_{\text {surr }}$ and $\Delta \mathrm{G}$ for the vaporization of one mole of this substance at $72.5^{\circ} \mathrm{C}$ and 1 atm . <br> (b) With reference to the formation of ammonia, discuss the effect of change of concentration and temperature on chemical equilibrium, according to Le Chatelier principle. <br> OR <br> $\mathrm{SO}_{2}$ and $\mathrm{SO}_{3}$ ( 0.10 mole each) were mixed in a two liter flask at 300 K . Equilibrium was attained as: $2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \stackrel{300 \mathrm{~K}}{\Longleftrightarrow} 2 \mathrm{SO}_{3(\mathrm{~g})}$ <br> The equilibrium pressure was 281.68 kPa . Find out the mole fraction of oxygen at equilibrium and the value of $K_{p}^{\circ}$. | 5+5 | $\begin{gathered} \mathrm{CO} 1 \\ \& \\ \mathrm{CO} \end{gathered}$ |
| SECTION-C (Attempt all Questions; internal choice is given for question number 11) |  |  |  |
| Q10 | (a) State Planck's statement of third law of thermodynamics. Show and explain the schematic plot of variation of entropy of a substance heated from 0 K (solid) to a temperature ( T ) in the gas phase <br> (b) Derive the van't Hoff equation. A reaction has a value of $K_{p}=0.026$ at $25^{\circ} \mathrm{C}$ and $\Delta H_{r x n}^{\circ}=32.4 \mathrm{~kJ} / \mathrm{mol}$; Calculate the value of $K_{p}$ at $37^{\circ} \mathrm{C}$. ( $\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ ). | 10+10 | $\begin{gathered} \mathrm{CO} 1 \\ \& \\ \mathrm{CO} \end{gathered}$ |
| Q 11 | (a) One mole of $\mathrm{Zn}(\mathrm{s})$ is heated from 300 K to 1500 K . Calculate the entropy changes from the following data: melting point of $\mathrm{Zn}=692 \mathrm{~K}$, boiling point of $\mathrm{Zn}=1180 \mathrm{~K}$, enthalpy of fusion=7.53 kJ/mol, enthalpy of vaporization $=$ $115.9 \mathrm{~kJ} / \mathrm{mol}$, specific heat capacity of Zn in solid, liquid and gaseous phases are $0.384,0.512$ and $0.312 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$ respectively, molar mass of $\mathrm{Zn}=65.38 \mathrm{~g}$ | 8+6+6 | $\begin{gathered} \mathrm{CO1}, \\ \mathrm{CO1} \\ \text { and } \\ \mathrm{CO4} \end{gathered}$ |

$\mathrm{mol}^{-1}$.

## OR

Derive $d S=\frac{C_{V}}{T} d T+\frac{\alpha}{\beta} d V$, where $\alpha$ and $\beta$ are coefficient for thermal expansion at constant pressure and isothermal compressibility coefficient respectively. Under what conditions is $d G \leq 0$ a condition that defines the spontaneity of a process? Explain.
(b) The standard enthalpy of combustion of anthracene $\left(\mathrm{C}_{14} \mathrm{H}_{10}\right)$ is $-7163 \mathrm{~kJ} / \mathrm{mol}$. Calculate the standard enthalpy of formation of anthracene. Given that $\Delta H_{f}^{\mathrm{H}_{2} \mathrm{O}}=-286 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$ and $\Delta H_{f}^{C O_{2}}=-393 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$

## OR

Given the thermochemical equations:

$$
\begin{array}{cl}
H_{2(g)}+C_{3} H_{6(g)} \rightarrow C_{3} H_{8(g)} & \Delta H^{\circ}=-124 k J \\
5 O_{2(g)}+C_{3} H_{8(g)} \rightarrow 3 \mathrm{CO}_{2(g)}+4 \mathrm{H}_{2} O_{(l)} & \Delta H^{\circ}=-2220 \mathrm{~kJ} \\
\mathrm{H}_{2(g)}+1 / 2 \mathrm{O}_{2(g)} \rightarrow \mathrm{H}_{2} O_{(l)} & \Delta H^{\circ}=-286 \mathrm{~kJ}
\end{array}
$$

Calculate the standard enthalpy of combustion of propene.
(c) The vapour pressures of pure $\mathrm{CCl}_{4}$ and $\mathrm{SnCl}_{4}$ at $25^{\circ} \mathrm{C}$ are 114.9 and 238 mm Hg , respectively. Assuming ideal behavior, calculate the total vapour pressure of a mixture containing 10 gm of $\mathrm{CCl}_{4}$ and 15 g of $\mathrm{SnCl}_{4}$. (M.W. of $\mathrm{CCl}_{4}=154$ and $\mathrm{SnCl}_{4}=170$ ).

## OR

Explain how the degree of association of a non-electrolyte can be determined from the measurement of a colligative property.

| Name: <br> Enrolment No: |  |  |  |
| :---: | :---: | :---: | :---: |
| Progr <br> Cours Cours Nos. 0 Instru <br> 1) <br> 2) <br> 3) <br> 4) <br> 5) | UNIVERSITY OF PETROLEUM AND ENERGY STUD <br> End Semester Examination, May 2019 <br> me Name: B. Sc. (Hons.) Chemistry <br> Semest <br> Name : Physical Chemistry-II <br> Code : CHEM 1006 <br> page(s) : 3 <br> ons: Read all the below mentioned instructions carefully and follow them strictly Write your name and enrollment no. at the top of the question paper. <br> Do not write anything else on the question paper except your name and roll number. ttempt all the parts of a question at one place only. <br> ternal choices are given for question number 9 and 11. <br> $\mathrm{O} 1, \mathrm{CO} 2, \mathrm{CO} 3 \& \mathrm{CO} 4$ in the last column stand for course outcomes and are for officia | ES <br> arks : <br> use on |  |
| SECTION A (Attempt all Five Questions) |  |  |  |
| S. No. |  | Marks | CO |
| Q 1 | The molar heat of vaporization of water at $100^{\circ} \mathrm{C}$ is 40.585 kJ . To 1000 g of water, 5.6 g of glucose was dissolved to get glucose solution. Find out the boiling temperature of the solution. $\left(\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$ | 4 | CO4 |
| Q 2 | Evaluate the expression of $\left(\frac{\partial H}{\partial P}\right)_{T}$ for the van der Waals gas which obeys the equation of state $P(V-b)=R T$. (Hint $d H=T d S+V d P$ ) | 4 | CO1 |
| Q 3 | Show that for a system decrease in the value of Helmholtz free energy at constant temperature represents the maximum amount of work that can be obtained from the system. | 4 | CO1 |
| Q 4 | Write a short note on Raoult's laws. Mention its two industrial applications. | 4 | CO4 |
| Q 5 | The volume of an aqueous solution of NaCl , at $25^{\circ} \mathrm{C}$ was expressed as a function of the amount " $\mathbf{m}$ " in one kg of solvent in the following form: $\mathrm{V} / \mathrm{cm}^{3}=1000.94+16.4(\mathrm{~m} / \mathrm{mol})+12.14(\mathrm{~m} / \mathrm{mol})^{3 / 2}-0.0027(\mathrm{~m} / \mathrm{mol})^{5 / 2}$ <br> Find the partial molar volume of NaCl . | 4 | CO2 |
| SECTION B (Attempt all Questions; internal choice is given for question number 9) |  |  |  |
| Q 6 | (a) Show that the criteria of spontaneity is $d S>\frac{Q_{\text {irrev }}}{T}$. <br> (b) For an ideal gas $\overline{C_{v}}=3 / 2 R$. Calculate the change in entropy suffered by 4 mol of the gas on being heated from 400 K to 500 K at (i) constant pressure and (ii) constant volume. | 4+6 | CO1 |


| Q 7 | (a) What are the state and path functions? Classify the following into state and path functions: <br> (i) enthalpy (ii) entropy and (iii) heat capacity. <br> (b) Using thermodynamic square find out the Maxwell relations of <br> (i) $\left(\frac{\partial P}{\partial S}\right)_{V}$ and (ii) $\left(\frac{\partial P}{\partial T}\right)_{V}$ | 5+5 | CO1 |
| :---: | :---: | :---: | :---: |
| Q 8 | (a) Given the following information: $\begin{array}{cc} A+B \rightarrow C+D \quad \Delta H^{\circ}=-10.5 \mathrm{~kJ} \\ C+D \rightarrow E & \Delta H^{\circ}=\quad 15.0 \mathrm{~kJ} \end{array}$ <br> Calculate the $\Delta H^{\circ}$ for each of the following reactions: <br> (i) $3 C+3 D \rightarrow 3 A+3 B$ <br> (ii) $2 E \rightarrow 2 A+2 B$ <br> (b) Calculate the $\Delta_{m i x} \mathrm{G}$ and $\Delta_{m i x} \mathrm{~S}$, for mixing the constituents of air ( $\mathrm{N}_{2}-78$ mole $\%, \mathrm{O}_{2}-20 \mathrm{~mol} \%$ and $\mathrm{H}_{2}-2$ mole $\%$ ) at 300 K , to get 2 moles of air, assuming them as ideal mixture. | $2+8$ | $\begin{gathered} \mathrm{CO} 1 \\ \& \\ \mathrm{CO} 2 \end{gathered}$ |
| Q 9 | (a) Calculate the maximum work that can be done by a reversible heat engine operating between 350 and 100 K if 900 J is absorbed at 350 K . <br> OR <br> The value of $\Delta \mathrm{H}_{\text {fusion }}$ of a substance is $35.7 \mathrm{~kJ} / \mathrm{mol}$, and its normal melting point is $20^{\circ} \mathrm{C}$. Calculate $\Delta \mathrm{S}, \Delta \mathrm{S}_{\text {surr }}$ and $\Delta \mathrm{G}$ for the fusion of one mole of this substance at $20^{\circ} \mathrm{C}$ and 1 atm . <br> (b) With reference to the formation of ammonia in Haber process, discuss the effect of changes of concentration and temperature on chemical equilibrium, according to Le Chatelier principle. <br> OR <br> Derive the thermodynamic derivation of relation between free energy change and reaction quotient of following type. $a A+b B \Leftrightarrow c C+d D$ | 5+5 | $\begin{gathered} \mathrm{CO} 1 \\ \& \\ \mathrm{CO} \end{gathered}$ |
| SECTION-C (Attempt all Questions; internal choice is given for question number 11) |  |  |  |
| Q10 | (a) State the third law of thermodynamics. Show and explain the schematic plot of variation of entropy of a substance heated from 0 K (solid) to 1000 K (gas). <br> (b) Explain the various terms used in van't Hoff equation. A reaction has a value of $K_{p}=0.036$ at $25^{\circ} \mathrm{C}$ and $\Delta H_{r x n}^{\circ}=34.2 \mathrm{~kJ} / \mathrm{mol}$; Calculate the value of $K_{p}$ at 47 ${ }^{\circ} \mathrm{C}$. $\left(\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$. | 10+10 | $\begin{gathered} \mathrm{CO} 1 \\ \& \\ \mathrm{CO} \end{gathered}$ |


| Q 11 | (a) One mole of $\mathrm{Cu}(\mathrm{s})$ is heated from 300 K to 1500 K . calculate the entropy changes from the following data: melting point of $\mathrm{Cu}=692 \mathrm{~K}$, boiling point of $\mathrm{Cu}=1180 \mathrm{~K}$, enthalpy of fusion= $7.53 \mathrm{~kJ} / \mathrm{mol}$, enthalpy of vaporization $=$ $115.9 \mathrm{~kJ} / \mathrm{mol}$, specific heat capacity of Cu in solid, liquid and gaseous phases are $0.384,0.512$ and $0.312 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$ respectively, molar mass of $\mathrm{Cu}=63.5 \mathrm{~g}$ $\mathrm{mol}^{-1}$. <br> OR <br> Derive $d S=\frac{C_{P}}{T} d T+V \beta d P$, where $\beta$ is the isothermal compressibility coefficient. Under what conditions is $d A \leq 0$ a condition that defines the spontaneity of a process? Explain. <br> (b) The standard enthalpy of combustion of naphthalene $\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)$ is -5134 $\mathrm{kJ} / \mathrm{mol}$. Calculate the standard enthalpy of formation of naphthalene. Given that $\Delta H_{f}^{\mathrm{H}_{2} \mathrm{O}}=-286 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$ and $\Delta H_{f}^{C O_{2}}=-393 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$ <br> OR <br> Given the thermochemical equations: $\begin{array}{cl} H_{2(g)}+C_{3} H_{6(g)} \rightarrow C_{3} H_{8(g)} & \Delta H^{\circ}=-134 k J \\ 5 O_{2(g)}+C_{3} H_{8(g)} \rightarrow 3 \mathrm{CO}_{2(g)}+4 \mathrm{H}_{2} O_{(l)} & \Delta H^{\circ}=-2120 \mathrm{~kJ} \\ H_{2(g)}+1 / 2 O_{2(g)} \rightarrow H_{2} O_{(l)} & \Delta H^{\circ}=-286 \mathrm{~kJ} \end{array}$ <br> Calculate the standard enthalpy of combustion of propene. <br> (c) Explain how the degree of dissociation of a non-electrolyte can be determined from the measurement of a colligative property. <br> OR <br> Component $\mathrm{P}(0.6$ mole $)$ and $\mathrm{R}(0.4$ mole $)$ were mixed at $27^{\circ} \mathrm{C}$ to form an ideal solution. Calculate the $\Delta_{m i x} \mathrm{~V}, \Delta_{m i x} \mathrm{G}$ and $\Delta_{m i x} \mathrm{~S}$ of the solution. ( $\mathrm{R}=2 \mathrm{Cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$ ). | 8+6+6 | $\begin{gathered} \mathrm{CO1}, \\ \mathrm{CO1} \\ \text { and } \\ \mathrm{CO4} \end{gathered}$ |
| :---: | :---: | :---: | :---: |

