Name:

Enrolment No:

Time 03 hrs.

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Course: Waves & OpticsSemester: II **Program: BSc Physics (H) Course Code: PHYS 1014** Max. Marks: 100 No. of Pages:2 Instructions: All the questions are compulsory. Q6 and Q11 have internal choice

SECTION A

S. No.		Marks	CO
Q 1	Two beams having amplitude ratio 4:1 interfere. Calculate ratio of I_{R-min}/I_{R-max} .	4	CO1
Q2	Illustrate open-end and closed-end organ pipes, and write down the relation between the organ length (L) and wavelength (λ).	4	CO1
Q3	A plane wave, $X = 5 \sin (2x-t)$ travels with a phase velocity, $v_p = 2.5$ m/s. Calculate the frequency of the given wave.	4	CO2
Q4	Discuss Laplace's correction to the velocity (v) of sound wave in air medium that results in correct velocity value, equal to 330 m/s.	4	CO3
Q5	Show that the minimum thickness of a parallel thin film that will appear as bright or dark follows the condition $2 \times t_{min-bright} = t_{min-dark}$	4	CO2
	SECTION B		
Q6	In Newton's ring interference show that m th order dark ring diameter $D_m \propto \sqrt{m}$, where, m is natural number		
	$D_m \propto \sqrt{m}$, where, mis natural number		
	$D_m \propto \sqrt{m}$, where, this natural number OR	10	COI
		10	CO1
Q7	ORDiscuss Fresnel's half period zone with diagram. Show that radius of mth order zone, $r_m \propto \sqrt{m}$ where ,m is natural numberDiscuss interference of light in wedge shaped thin film. Find the condition for bright and dark fringe. Show the fringe width		
Q7	ORDiscuss Fresnel's half period zone with diagram. Show that radius of mth order zone, $r_m \propto \sqrt{m}$ where ,m is natural numberDiscuss interference of light in wedge shaped thin film. Find the condition for bright	10	CO1

	T = -	$\frac{M}{8}\sum_{n} \Box_{n}^{2} c_{n}^{2}$ where, M = total mass of the string, ω_{n} = frequency (n th mode) and		
	$c_n = amplitude (n^{th} mode), n is mode number.$			
Q9	In Melde's experiment, transverse vibration of a stretched string shows 5 loops when 0.5 Kg is applied. When the load is replaced by another load M the longitudinal vibration shows 3 loops. Calculate the unknown load M.			CO4
		SECTION-C		
Q10	(a) V	Write a short note on Michelson interferometer.		
		A plane transmission proting gives 2rd and an differentian mension of He Ne lager	10	CO2
	(b) A plane transmission grating gives 3^{rd} order diffraction maximum of He-Ne-laser ($\lambda = 632.5 \text{ nm}$) at 30 degree on a screen placed 50 cm away from grating. Calculate grating element and separation between central spot and 3^{rd} spot on the screen.			CO3
Q11	(a)	Tabulate the differences between Fresnel and Fraunhofer diffraction of light		
		OR	5	C01
		Tabulate the differences between interference and diffraction of light		
	(b)	Derive the expression for intensity profile of single slit Fraunhofer diffraction. Write the condition for diffraction maxima and minima.		
		OR	10	CO3
		Discuss qualitatively the Fresnel diffraction at a circular aperture with suitable diagram.	10	
	(c)	When the movable mirror is shifted by 0.003 cm a shift of 100 fringes is observed. Calculate the working wavelength. Consider the experiment is performed in air.		
			5	CO4
		OR		
		Calculate resolving power (R) of a grating at 2^{nd} order when sodium light (589 nm) gets diffracted resolving 0.6 nm fine lines ($\Delta\lambda$).		
		END		

Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Course: Waves & Optics Program: BSc Physics (H) Course Code: PHYS 1014 No. of Pages: 2 Instructions: All the questions are compulsory. Q6 and Q11 have internal choice

SECTION A

S. No.		Marks	CO
Q 1	In Young's double slit experiment (sodium light, $\lambda = 590$ nm) one measures fringe width, $\beta = 0.5$ mm on a screen placed 25 mm away from the slits. Calculate slits separation d.	4	CO1
Q2	Illustrate open-end and closed-end organ pipes, and write down the relation between the organ length (L) and wavelength (λ).	4	CO1
Q3	5 different plane waves with same amplitude of 2 unit and constant phase difference of $\delta = 60$ degrees superpose to result resultant wave of the form, $X = A \sin \delta$. Calculate resultant amplitude A.	4	CO2
Q4	Discuss Laplace's correction to the velocity (v) of sound wave in air medium that results in correct velocity value, equal to 330 m/s.	4	CO3
Q5	Show that minimum thickness of a parallel thin film that may appear as dark will be $t_{min-dark} = i 2$	4	CO2

SECTION B

Q6	Discuss interference of light waves using a biprism. Show that for two positions of lens the virtual sources (separated by d) will be observed with the condition, $d=\sqrt{d_1d_2}$ where, d ₁ , d ₂ are magnifications for the respective positions.		
	OR	10	CO1
	Show that Fresnel's half period zone of m th order follows the following relation, $r_m \propto \sqrt{m}$ where r_m is the radius of respective zone		
Q7	With neat diagram, describe wedge shaped thin film interference, and prove that for small angle fringe width $i \frac{\Box}{2}$, where = refractive index, = wedge angle	10	CO2

Semester: II Time 03 hrs. Max. Marks: 100

Q8	A 5 Newton tension produces 5 loops in the transverse vibration of a stretched string. How many loops one can observe if the wire undergoes longitudinal vibration with the same load?			CO4
Q9	Deduce Kinetic Energy (T) of a vibrating string in the form $T = \frac{M}{8} \sum_{n} \Box_{n}^{2} c_{n}^{2}$ where, M = total mass of the string, ω_{n} and c_{n} are the frequency amplitude of n th order vibrational mode, respectively.			CO3
		SECTION-C		
Q10	(a) Write a short note on Fabri-Perot interferometer.		10	CO2
	(b) A diffraction pattern is obtained using two slits. The 3^{rd} order diffraction maximum of Ruby laser ($\lambda = 694.3$ nm) is observed at 30 degree on a screen placed 50 cm away from grating. Calculate slits separation.			CO3
Q11	(a)	Write down major differences between Fresnel and Fraunhofer diffraction OR Discuss briefly, the interference by division of wavefront and amplitude. Give examples of each.	5	CO1
	(b)	Derive the expression for intensity of single slit Fraunhofer diffraction pattern. Obtain the conditions for max and min. OR Discuss qualitatively the Fresnel diffraction at a straight edge with suitable diagram.	10	CO3
	(c)	In Michelson interferometer 0.0025 cm mirror shift results in a shift of 90 fringes. If the working wavelength is 780 nm calculate refractive index (μ) of the medium. OR A plane diffraction grating resolves 6 Å fine lines (Δλ) of sodium light (5890 Å) at 2 nd order. Calculate resolving power (R) of the grating.	5	CO4
		END		