Name: Enrolment No:		1 UPES UNIVERSITY WITH A PURPOSE	
SECTION A			
S. No.		Marks	CO
Q 1	Two beams having amplitude ratio 4:1 interfere. Calculate ratio of $\mathrm{I}_{\mathrm{R} \text {-min }} / \mathrm{I}_{\mathrm{R} \text {-max }}$.	4	CO1
Q2	Illustrate open-end and closed-end organ pipes, and write down the relation between the organ length (L) and wavelength (λ).	4	CO1
Q3	A plane wave, $X=5 \sin (2 x-t)$ travels with a phase velocity, $v_{p}=2.5 \mathrm{~m} / \mathrm{s}$. Calculate the frequency of the given wave.	4	CO2
Q4	Discuss Laplace's correction to the velocity (v) of sound wave in air medium that results in correct velocity value, equal to $330 \mathrm{~m} / \mathrm{s}$.	4	CO3
Q5	Show that the minimum thickness of a parallel thin film that will appear as bright or dark follows the condition $2 \times t_{\text {min-bright }}=t_{\text {min-dark }}$	4	CO2
SECTION B			
Q6	In Newton's ring interference show that $\mathrm{m}^{\text {th }}$ order dark ring diameter $D_{m} \propto \sqrt{m}$, where, mis natural number OR Discuss Fresnel's half period zone with diagram. Show that radius of $\mathrm{m}^{\text {th }}$ order zone, $r_{m} \propto \sqrt{m}$ where , m is natural number	10	CO1
Q7	Discuss interference of light in wedge shaped thin film. Find the condition for bright and dark fringe. Show the fringe width $i \frac{\square}{2 \sin }$, where $=$ refractive index,$=$ wedge angle	10	CO2
Q8	Derive the expression for Kinetic Energy (T) of a vibrating string in the form	10	CO3

	$T=\frac{M}{8} \sum_{n} \square_{n}^{2} c_{n}^{2}$ where, $\mathrm{M}=$ total mass of the string, $\omega_{\mathrm{n}}=$ frequency $\left(\mathrm{n}^{\text {th }}\right.$ mode $)$ and $\mathrm{c}_{\mathrm{n}}=$ amplitude ($\mathrm{n}^{\text {th }}$ mode), n is mode number.			
Q9		elde's experiment, transverse vibration of a stretched string shows 5 loops when Kg is applied. When the load is replaced by another load M the longitudinal tion shows 3 loops. Calculate the unknown load M .	10	CO4
SECTION-C				
Q10	(a) Write a short note on Michelson interferometer. (b) A plane transmission grating gives $3^{\text {rd }}$ order diffraction maximum of $\mathrm{He}-\mathrm{Ne}$-laser $(\lambda=632.5 \mathrm{~nm})$ at 30 degree on a screen placed 50 cm away from grating. Calculate grating element and separation between central spot and $3^{\text {rd }}$ spot on the screen.		10 10	$\begin{aligned} & \mathrm{CO} 2 \\ & \mathrm{CO} \end{aligned}$
Q11	(a)Tabulate the differences between Fresnel and Fraunhofer diffraction of light OR Tabulate the differences between interference and diffraction of light		5	CO1
	(b)	Derive the expression for intensity profile of single slit Fraunhofer diffraction. Write the condition for diffraction maxima and minima. OR Discuss qualitatively the Fresnel diffraction at a circular aperture with suitable diagram.	10	CO3
	(c)	When the movable mirror is shifted by 0.003 cm a shift of 100 fringes is observed. Calculate the working wavelength. Consider the experiment is performed in air. OR Calculate resolving power (R) of a grating at $2^{\text {nd }}$ order when sodium light (589 nm) gets diffracted resolving 0.6 nm fine lines $(\Delta \lambda)$.	5	CO4
		END		

Name: Enrolment No:			
Cours Progr Cours No. of Instru	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019 Waves \& Optics : BSc Physics (H) Code: PHYS 1014 ages: 2 ions: All the questions are compulsory. Q6 and Q11 have internal choice	emester Time 0 x. Mar	$\begin{aligned} & \mathrm{I} \\ & \mathrm{hrs} . \\ & \mathbf{1 0 0} \end{aligned}$
SECTION A			
S. No.		Marks	CO
Q 1	In Young's double slit experiment (sodium light, $\lambda=590 \mathrm{~nm}$) one measures fringe width, $\beta=0.5 \mathrm{~mm}$ on a screen placed 25 mm away from the slits. Calculate slits separation d.	4	CO1
Q2	Illustrate open-end and closed-end organ pipes, and write down the relation between the organ length (L) and wavelength (λ).	4	CO1
Q3	5 different plane waves with same amplitude of 2 unit and constant phase difference of $\delta=60$ degrees superpose to result resultant wave of the form, $X=A \sin i$. Calculate resultant amplitude A.	4	CO2
Q4	Discuss Laplace's correction to the velocity (v) of sound wave in air medium that results in correct velocity value, equal to $330 \mathrm{~m} / \mathrm{s}$.	4	CO 3
Q5	Show that minimum thickness of a parallel thin film that may appear as dark will be $t_{\text {min-dark }}=i 2$	4	CO2
SECTION B			
Q6	Discuss interference of light waves using a biprism. Show that for two positions of lens the virtual sources (separated by d) will be observed with the condition, $d=\sqrt{d_{1} d_{2}}$ where, $\mathrm{d}_{1}, \mathrm{~d}_{2}$ are magnifications for the respective positions. OR Show that Fresnel's half period zone of $\mathrm{m}^{\text {th }}$ order follows the following relation, $r_{m} \propto \sqrt{m}$ where r_{m} is the radius of respective zone	10	CO1
Q7	With neat diagram, describe wedge shaped thin film interference, and prove that for small angle fringe width $i \frac{\square}{2}$, where $=$ refractive index,$=$ wedge angle	10	CO2

Q8	A 5 Newton tension produces 5 loops in the transverse vibration of a stretched string. How many loops one can observe if the wire undergoes longitudinal vibration with the same load?	10	CO4
Q9	Deduce Kinetic Energy (T) of a vibrating string in the form $T=\frac{M}{8} \sum_{n} \square_{n}^{2} c_{n}^{2}$ where, $\mathrm{M}=$ total mass of the string, ω_{n} and c_{n} are the frequency amplitude of $\mathrm{n}^{\text {th }}$ order vibrational mode, respectively.	10	CO3
SECTION-C			
Q10	(a) Write a short note on Fabri-Perot interferometer. (b) A diffraction pattern is obtained using two slits. The $3^{\text {rd }}$ order diffraction maximum of Ruby laser $(\lambda=694.3 \mathrm{~nm})$ is observed at 30 degree on a screen placed 50 cm away from grating. Calculate slits separation.		$\begin{aligned} & \mathrm{CO} 2 \\ & \mathrm{CO} \end{aligned}$
Q11	(a)Write down major differences between Fresnel and Fraunhofer diffraction OR Discuss briefly, the interference by division of wavefront and amplitude. Give examples of each.	5	CO1
	(b) Derive the expression for intensity of single slit Fraunhofer diffraction pattern. Obtain the conditions for max and min. OR Discuss qualitatively the Fresnel diffraction at a straight edge with suitable diagram.	10	CO 3
	(c) In Michelson interferometer 0.0025 cm mirror shift results in a shift of 90 fringes. If the working wavelength is 780 nm calculate refractive index (μ) of the medium. OR A plane diffraction grating resolves $6 \AA$ fine lines $(\Delta \lambda)$ of sodium light (5890 \AA) at $2^{\text {nd }}$ order. Calculate resolving power (R) of the grating.	5	CO4
	END		

