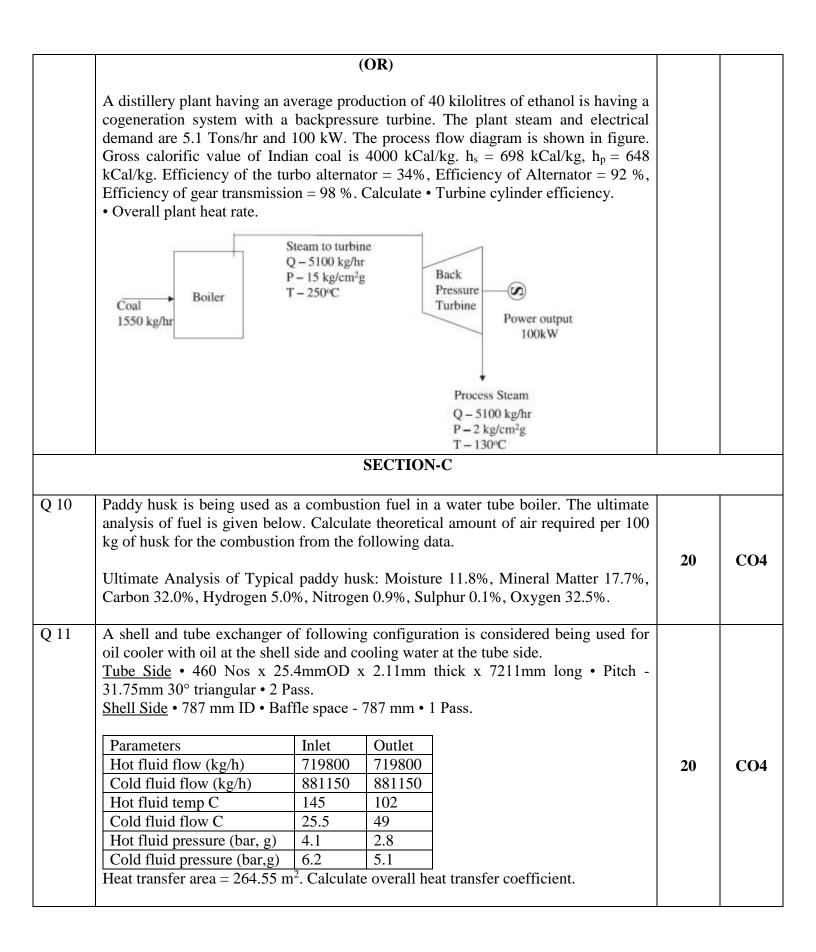
Name:

Enrolment No:

UPES


UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

END Semester Examination, March 2019 Programme Name: M. Tech Energy Systems

Programme Nan	ne: M. Tech Energy Systems	Semester	: II	
Course Name	: Performance analysis of Thermal Equipment	Time	: 03 hrs	
Course Code	: EPEC 8004	Max. Mark	as : 100	
Nos. of page(s)	:3			

SECTION A

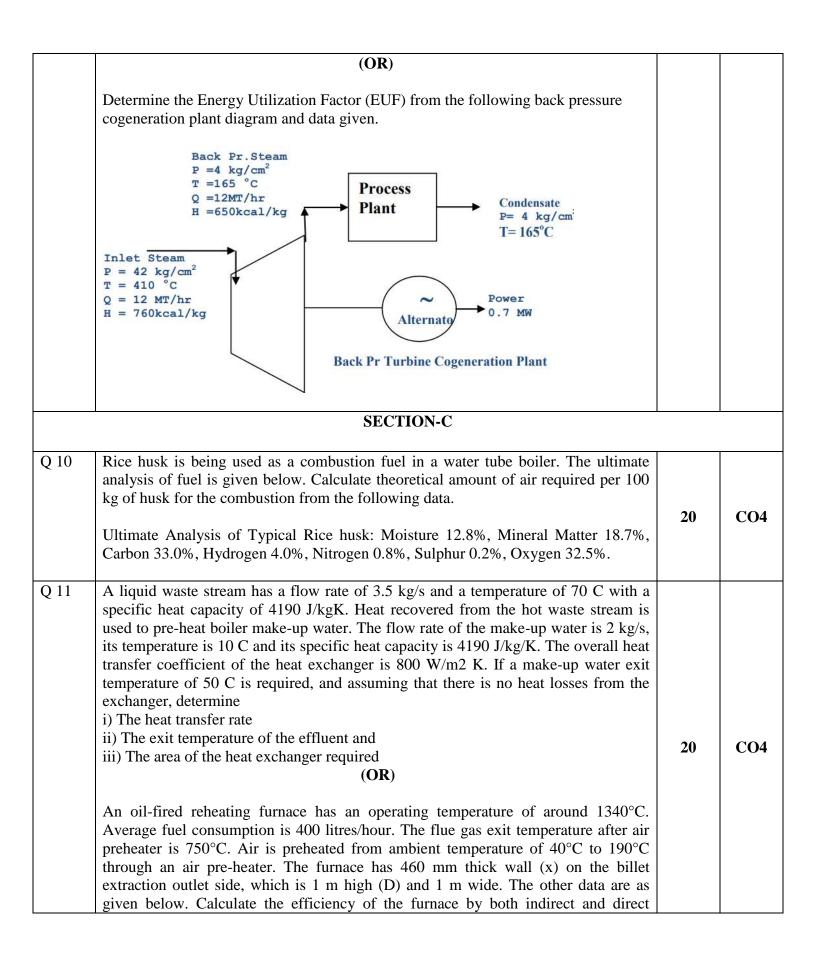
S. No.		Marks	CO
Q 1	Draw the schematic diagram of topping cycle cogeneration system.	4	CO1
Q 2	Illustrate the continuous and batch type reheating furnace.		CO1
Q 3	Explain why the term effectiveness rather than efficiency is used in the performance assessment of heat exchanger.		CO2
Q 4	In a sugar mill, a process requires 5000 kg/hr of dry saturated steam at 7 kg/cm2 (g). For the flow velocity not to exceed 25 m/s, determine the pipe diameter size for distribution of steam. Specific volume at 7 kg/cm2 = 0.24 m3/kg	4	CO2
Q 5	Discuss advantages of condensate and flash steam recovery in steam systems.	4	CO1
	SECTION B	•	
Q 6	The following are the data collected for a boiler using furnace oil as a fuel. Determine the boiler efficiency based on the GCV by indirect method. <u>Ultimate analysis (wt%)</u> : carbon 84, hydrogen 12, nitrogen 0.5, oxygen 1.5, moisture 0.5, NCV of fuel 9763 kCal/kg and humidity 0.025 kg of moisture/kg of dry air. <u>Flue gas analysis</u> : CO2 9.8% by volume, flue gas exit temperature 190°C, and ambient temperature 30°C.	10	CO2
Q 7	The parameters for back pressure steam turbine cogeneration plant is given below. <u>Inlet steam (1)</u> p=16 kg/cm2, t= 310C, Q= 9000kg/hr. <u>Outlet steam (2)</u> p=5 kg/cm2, t=235C, Q=9000kg/hr. Calculate the turbine stage (isentropic) efficiency. $H_1 = 798$ kCal/kg, $H_2 = 748$ kCal/kg.	10	CO3
Q 8	Milk is flowing in a pipe cooler at a rate of 0.85 kg/sec. Initial temperature of the milk is 60°C and it is cooled to 22 °C using a stirred water bath with a constant temperature of 10°C around the pipe. Specific heat of milk is 3.86 KJ/kg°C. Calculate the heat transfer rate (kcal/hr) and also LMTD of the exchanger.	10	CO3
Q 9	The flow rates of the hot and cold-water streams flowing through a heat exchanger are 10 and 25 kg/min, hot and cold side inlet temperatures are 70 and 25°C respectively. The exit temperature of the hot side stream is required to be 50°C and overall heat transfer coefficient is 800 w/m ² . Calculate the heat transfer area of parallel flow and counter flow heat exchanger.	10	CO3

(OR)	
An oil-fired reheating furnace has an operating temperature of around 1340°C. Average fuel consumption is 400 litres/hour. The flue gas exit temperature after air preheater is 750°C. Air is preheated from ambient temperature of 40°C to 190°C through an air pre-heater. The furnace has 460 mm thick wall (x) on the billet extraction outlet side, which is 1 m high (D) and 1 m wide. The other data are as given below. Calculate the efficiency of the furnace by both indirect and direct method. Specific gravity of oil = 0.92, Calorific value of oil = 10000 kCal/kg, Average O2 percentage in flue gas = 12%, Weight of stock = 6000 kg/hr, Specific heat of Billet = 0.12 kCal/kg/°C, Surface temperature of roof and side walls = 122 °C Surface temperature other than heating and soaking zone = 85 °C, oxygen in flue gas = 12%, Black body radiation corresponding to 1340°C = 36.00 kCal/cm2 /hr, Emissivity = 0.8, The factor of radiation = 0.71. Assume the appropriate data wherever required.	

Name:

Enrolment No:

UPES


UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

END Semester Examination, March 2019 1 Toch Energy Systems

Programme Nai	Programme Name: M. Tech Energy Systems		: II	
Course Name	: Performance analysis of Thermal Equipment	Time	: 03 hrs	
Course Code	: EPEC 8004	Max. Mark	Max. Marks : 100	
Nos. of page(s)	:3			

SECTION A

S. No.		Marks	CO
Q 1	List down any five good practices in Furnaces for energy efficiency.	4	CO1
Q 2	2 Illustrate the continuous type reheating furnace with schematic diagram.		CO1
Q 3	discuss the term effectiveness and efficiency in the performance assessment of heat exchanger.		CO2
Q 4 In a paper mill, a process requires 1000 kg/hr of dry saturated steam at 5 kg/cm2 (g). For the flow velocity not to exceed 30 m/s, determine the pipe diameter size for distribution of steam. Specific volume at 5 kg/cm2 = 0.21 m3/kg		4	CO2
Q 5	Explain the condensate and flash steam recovery in steam systems.	4	CO1
	SECTION B		
Q 6	The following are the data collected for a generator using furnace oil as a fuel. Determine the generator efficiency based on the GCV by indirect method. <u>Ultimate analysis (wt%)</u> : carbon 84, hydrogen 12, nitrogen 0.5, oxygen 1.5, moisture 0.5, NCV of fuel 9763 kCal/kg and humidity 0.025 kg of moisture/kg of dry air. <u>Flue gas analysis</u> : CO2 9.8% by volume, flue gas exit temperature 150°C, and ambient temperature 30°C.	10	CO2
Q 7	Calculate the electricity consumption in an induction melting furnace from the following melt cycle data. Mild steel (MS) scrap charged: 1250 kg, Specific heat of MS : 0.68 kJ/kgC, Latent heat of MS : 270 kJ/kg, MS melting temperature : 1450 C Inlet MS charge temperature : 35 C Efficiency of furnace : 70%.	10	CO3
Q 8	Milk is flowing in a pipe cooler at a rate of 0.95 kg/sec. Initial temperature of the milk is 55 °C and it is cooled to 18 °C using a stirred water bath with the constant temperature of 10°C around the pipe. Specific heat of milk is 3.86 KJ/kg°C. Calculate the heat transfer rate (kcal/hr) and also LMTD of the exchanger.	10	CO3
Q 9	The flow rates of the hot and cold-water streams flowing through a heat exchanger are 10 and 25 kg/min, hot and cold side inlet temperatures are 70 and 25°C respectively. The exit temperature of the hot side stream is required to be 50°C and overall heat transfer coefficient is 800 w/m ² . Calculate the heat transfer area of parallel flow and counter flow heat exchanger.	10	CO3

method. Specific gravity of oil = 0.92, Calorific value of oil = 10000 kCal/k	3,
Average O2 percentage in flue gas = 12%, Weight of stock = 6000 kg/hr, Specif	ic
heat of Billet = $0.12 \text{ kCal/kg/}^{\circ}\text{C}$, Surface temperature of roof and side walls = $122 ^{\circ}$	C
Surface temperature other than heating and soaking zone = 85 °C, oxygen in flue g	ıs
= 12%, Black body radiation corresponding to 1340°C = 36.00 kCal/cm2 /k	r,
Emissivity = 0.8 , The factor of radiation = 0.71 . Assume the appropriate da	a
wherever required.	