Name: S. No. **Enrolment No:** ## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES **End Semester Examination, May 2019** **Course:** Sedimentary and Petroleum Geology Program: B.Tech APE_UP Semester: IV Time 03 hrs. **Course Code: PEGS 2002** Max. Marks: 100 Marks \mathbf{CO} **Instructions:** Draw appropriate diagram where required. ## **SECTION A** | 5.110. | | Maiks | | |--------|--|-------|-----| | Q 1 | Discuss Udden-Wentworth grade scale in brief. | 5 | CO1 | | Q 2 | Define development process of Bouma sequence with labeled figure. | 5 | CO4 | | Q 3 | Explain textural maturity of a sandstone reservoir based on length of transportation. | 5 | CO1 | | Q 4 | a) The Biodegradation of crude oil typically decrease the viscosity. b) Permeability decreases with decreasing grain size. c) TOC means to Total Oil Chemistry. d) Isopach map is a contour map of thickness that illustrate formation thickness. | 5 | CO6 | | | e) NRV * NTG = GRV. SECTION B | | | | Q 5 | Explain in detail about the classifications of Limestone rocks given by Folk. | 10 | CO3 | | Q 6 | Give definitions of the followings and draw appropriate figures- (Any Five) a) Herring bone cross bedding b) Current ripples c) Bedding plane d) CCD e) Burrow f) Stramatolites | 2 x 5 | CO2 | | Q7 | Describe the Walther's law of correlation of facies and its application in paleo sedimentary environment determination. Draw suitable figures to support your logic. | 10 | CO4 | | Q8 | Illustrate the textural maturity and depositional changes between a Meandering river and a Braided river set up. Draw neat sketch and mark associated geological features. | 10 | CO3 | |-----|---|------------|-----| | | OR | | | | | Explain the origin of Rudaceous rocks. Give general classification, supported by neat diagrams. | 2+8 | | | | SECTION-C | | | | Q 9 | Petroleum System Analysis- a) Illustrate six important Geological elements of Petroleum System characterization, b) Prepare a Risk matrix based on given parameters and explain the results, RP: (.9) SP: (.95) SC: (1) A: (.85) T: (.95) RD: (.70) c) Calculate GCF from risk matrix and explain its significance in prospect ranking and risking. | 10+5+ | CO6 | | Q10 | Sequence stratigraphy analysis- a) Analyze and draw a depositional sequence with one cycle of sea level change, annotated by system tracts and SB. b) Explain the variation in deposition style of different systems tracts (starting from falling stage to high stand systems). c) Draw appropriate diagram to support your interpretation, | 5+10+
5 | CO5 | | | OR | | | | | a) Determine how sea level changes/ variable sediment supply affects the stacking patterns of different parasequences. (with diagrams) b) Explain the important parameters used for seismic facies analysis, c) Draw five types of seismic facies patterns with definition. | 10+5+
5 | | ## **SECOND SET OF PAPER** Name: **Enrolment No:** **Semester: IV** Time 03 hrs. ## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES **End Semester Examination, May 2019** **Course:** Sedimentary and Petroleum Geology Program: B.Tech APE UP Course Code: PEGS 2002 Max. Marks: 100 **Instructions:** Draw appropriate diagram where required. | SECTION A | | | | |-----------|--|-------|-----| | S. No. | | Marks | CO | | Q 1 | Explain sedimentary structures of Biogenic origin and their significance. | 5 | CO1 | | Q 2 | Discuss the mechanism of fining upward and coarsening upward depositional sequences. | 5 | CO2 | | Q 3 | Define the Calcite Compensation Depth (CCD) and its significance in paleogeological interpretation. | 5 | CO3 | | Q 4 | a) Lithic fragments will be dominating in long distance transported sediments, b) Shale rock having grater depositional porosity then sandstone rock. c) Chalk is a clastic sedimentary rock, d) Conversion of 64mm Grain size is equals to -4 Phi, e) Packing density controls the porosity of the rocks, | 5 | CO2 | | | SECTION B | | | | Q 5 | Illustrate the basic composition of carbonate rocks. Define any five types of carbonate porosities, supported by appropriate diagrams. | 10 | CO1 | | Q 6 | Explain in detail about the classifications of Limestone rocks given by Dunham. | 10 | CO3 | | Q7 | Establish Walther's law of correlation of facies and it's importance in geological interpretation of depositional environment. | 10 | CO4 | | Q8 | Describe the followings with labeled diagrams- a) Mass transport complexes (MTCs) b) Deepwater turbidites | 5+5 | CO4 | | | OR | | | | | Describe the followings with labeled diagrams- | | | |-----|--|-------------|-----| | | a) The important characteristics of Delta deposits, | 5+5 | | | | b) Morphological classification of Deltas, | | | | | SECTION-C | | | | Q 9 | Illustrate the followings- (Draw appropriate figure) | | | | | a) Theories of hydrocarbon origin- Organic and Inorganic b) Structural, Stratigraphic and Combined traps formation mechanism for hydrocarbon accumulation, c) Prepare a Risk matrix of a prospect based on given parameters and explain your results, Prospect A- RP: (.87) SP: (.85) SC: (1) A: (.95) T: (.90) RD: (.80) d) Calculate GCoS from risk matrix and highlight the key risk for this prospect. | 5+5+5
+5 | CO6 | | 010 | d) Calculate GCoS from risk matrix and highlight the key risk for this prospect, | | | | Q10 | a) Analyze and draw a depositional sequence with one cycle of sea level change, annotated by system tracts and SB. b) Explain the variation in deposition style of different systems tracts (starting from falling stage to high stand systems). c) Draw appropriate diagram to support your interpretation, | 5+10+
5 | CO5 | | | OR | | | | | Define Eustatic and relative sea level changes Which type of sediments will be accumulated in basin during FSST and how will they interpreted on seismic data, Determine how sea level changes/ variable sediment supply affects the stacking patterns of different parasequences (Draw figures). | 5+5+
10 | |