Enrolme	: UPES						
				· · · · · · · · · · · · · · · · · · ·			
				ROLEUM AND ENERGY STUDIES			
D	• •			er Examination, May 2019		x 7 x	
-		me: B. Tech. Civil Engine : Design of Formwork	ering		neste	er : VI : 03 h	
	Course Name : Design of Formwork Time Course Code : CEEG 318 Max. M						
Nos. of		: CEEG 518 : 5		Ivia	X. IVI	arks: 100	
1105. 01			IESTI	ONS ARE COMPULSORY			
	1 1			SECTION A			
	ALL Q	UESTIONS ARE COMP		RY AND EACH QUESTION CARRI	ES 4	MARKS	
S. No.		-		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Marks	CO
Q 1	State 7	True/ False for the following	g stater	nents:			
				are: shells, domes, folded plates, coo	ling		
		towers, tunnels, etc.					
	b. Traditional slab and beam formwork is characterized by less labor and time efficient operation.						CO
			-	00			
	c. Various factors in achieving economy in column formwork are-location, orientation, shape, size, varying percentage of steel, and avoiding projections.						
	b						
Q 2		the following:	15 0300	because forms are assembled at the grou	una.		
X -	1 Julie II						
	C		S.				
	S.	COLUMN A		COLUMN B			
	5. NO.	COLUMN A	NO	COLUMN B			
	NO.		NO				
		COLUMN A Long span bridges	NO	Silos, bins, shafts, cores, bridge piers,			
	NO.	Long span bridges	NO · A	Silos, bins, shafts, cores, bridge piers, caissons, etc.		4	CO
	NO.		NO	Silos, bins, shafts, cores, bridge piers,		4	CO
	NO.	Long span bridges Vertical slipform is used for	NO · A	Silos, bins, shafts, cores, bridge piers, caissons, etc. Girder and slab arrangements	7	4	CO
	NO. 1 2	Long span bridges Vertical slipform is used	NO · A B	Silos, bins, shafts, cores, bridge piers, caissons, etc.	7	4	CO
	NO. 1 2	Long span bridges Vertical slipform is used for	NO · A B	Silos, bins, shafts, cores, bridge piers, caissons, etc. Girder and slab arrangements Inside shutter is fixed, aligned correctly and supported by suitable props. Curb reinforcement is fixed and a starter bar	7	4	CO
	NO. 1 2 3	Long span bridges Vertical slipform is used for Large area wall form	NO · A B C	Silos, bins, shafts, cores, bridge piers, caissons, etc. Girder and slab arrangements Inside shutter is fixed, aligned correctly and supported by suitable props. Curb reinforcement is fixed and a starter bar is welded with the cutting edge.		4	CO
	NO. 1 2	Long span bridges Vertical slipform is used for	NO · A B	Silos, bins, shafts, cores, bridge piers, caissons, etc. Girder and slab arrangements Inside shutter is fixed, aligned correctly and supported by suitable props. Curb reinforcement is fixed and a starter bar is welded with the cutting edge. Gang form, prefabricated panels joined		4	CO
	NO. 1 2 3 4	Long span bridges Vertical slipform is used for Large area wall form Curb	NO · A B C D	Silos, bins, shafts, cores, bridge piers, caissons, etc. Girder and slab arrangements Inside shutter is fixed, aligned correctly and supported by suitable props. Curb reinforcement is fixed and a starter bar is welded with the cutting edge. Gang form, prefabricated panels joined together to form a large shutter panel.			CO
Q 3	NO. 1 2 3 4 What i	Long span bridges Vertical slipform is used for Large area wall form Curb is tunnel form system? State	NO · A B C D e the tw	Silos, bins, shafts, cores, bridge piers, caissons, etc. Girder and slab arrangements Inside shutter is fixed, aligned correctly and supported by suitable props. Curb reinforcement is fixed and a starter bar is welded with the cutting edge. Gang form, prefabricated panels joined together to form a large shutter panel. vo advantages of tunnel form system.		2+2 =4	CO
Q 3 Q 4	NO. 1 2 3 4 What i	Long span bridges Vertical slipform is used for Large area wall form Curb is tunnel form system? State	NO · A B C D e the tw	Silos, bins, shafts, cores, bridge piers, caissons, etc. Girder and slab arrangements Inside shutter is fixed, aligned correctly and supported by suitable props. Curb reinforcement is fixed and a starter bar is welded with the cutting edge. Gang form, prefabricated panels joined together to form a large shutter panel.		2+2 =4 2+2 =	СО
Q 4	NO. 1 2 3 4 What is	Long span bridges Vertical slipform is used for Large area wall form Curb is tunnel form system? State s flying form system? State	NO A B C D the tw	Silos, bins, shafts, cores, bridge piers, caissons, etc. Girder and slab arrangements Inside shutter is fixed, aligned correctly and supported by suitable props. Curb reinforcement is fixed and a starter bar is welded with the cutting edge. Gang form, prefabricated panels joined together to form a large shutter panel. vo advantages of tunnel form system. o disadvantages of flying form system.		2+2 =4 2+2 = 4	
	NO. 1 2 3 4 What is What is	Long span bridges Vertical slipform is used for Large area wall form Curb is tunnel form system? State s flying form system? State	NO A B C D the tw the tw nain co	Silos, bins, shafts, cores, bridge piers, caissons, etc. Girder and slab arrangements Inside shutter is fixed, aligned correctly and supported by suitable props. Curb reinforcement is fixed and a starter bar is welded with the cutting edge. Gang form, prefabricated panels joined together to form a large shutter panel. vo advantages of tunnel form system.		2+2 =4 2+2 =	СО

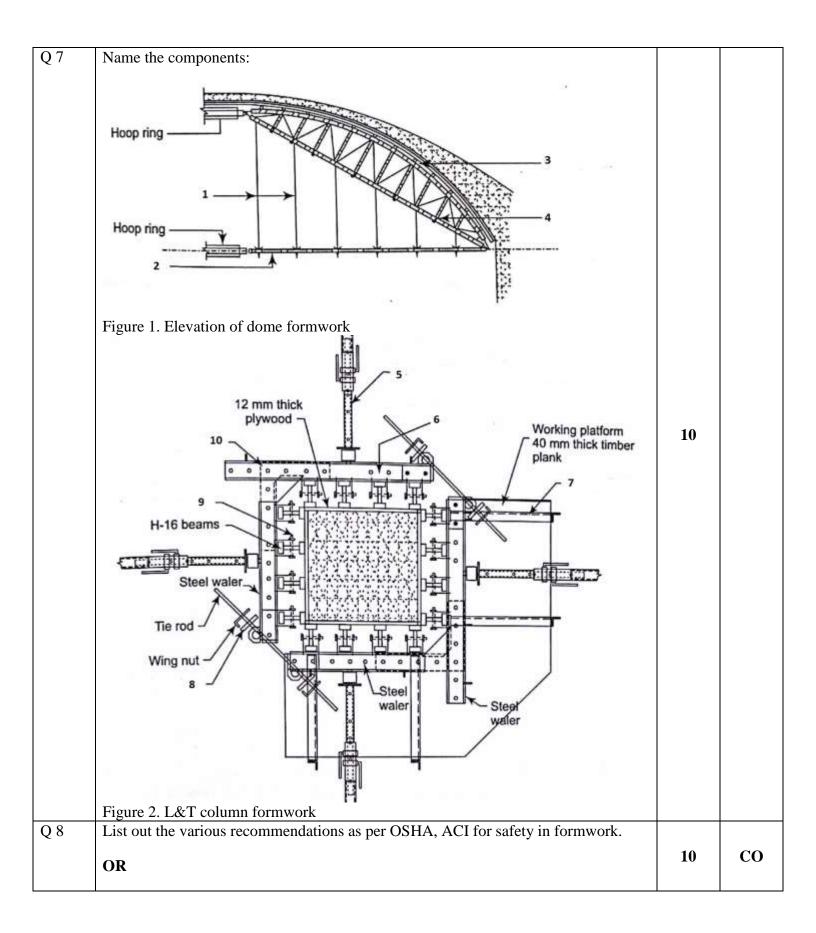

Q 6	ALL QUESTIONS ARE COMPULSORY AND EACH QUESTION CARRIES 10 Draw a qualitative diagram for the conventional wall formwork. Also, name all	MARKS 6+4	
	components.	=10	CO
Q 7	Name the components:	=10 1x 10= 10	
	Figure 1. Typical formwork for heavy beam		

	Figure 2. Folded plate formwork		
Q 8	List out the various recommendations as per OSHA, ACI for safety in formwork. OR List out the various reasons for formwork failure.	10	СО
Q 9	 Sequence the following: a) determine the height of the column. b) select appropriate permissible stress and section properties. c) determine the material available for sheathing, yokes, and batten. d) estimate the load. e) compute the lateral pressure. f) determine the largest cross-sectional dimension of the column. g) select the sheathing material. h) determine the stud spacing. Discuss the reasons for case study of failure of cantilever portion of pier cap and deck slab failure. 	6+4 =10	
	SECTION-C ATTEMPT ANY TWO QUESTIONS AND EACH QUESTION CARRIES 20 M	IARKS	
Q 10	Check the adequacy of wall formwork for the following details and data: 12 mm thick plywood is used, H-16 beam @ 210 mm c/c distance has been used as studs, ISMC 100 double walers back to back with 50 mm gap has been used @ 1000 mm c/c distance, and 16 mm tie rod @ 1000 mm c/c with yield stress 250 MPa has been used.	20	СО

1.	For concrete pressure by us	sing CIRIA me	ethod	
	a. D, weight density of co	-		
	b. R, rate of rise = 1 m/h			
	c. Temperature of concret	e = 25 °C		
	d. H, vertical form height			
	e. h, vertical pour height =			
	f. Shape constant = 1			
	g. Concrete constituent fa	ctor = 0.45		
2.	For 12 mm plywood			
	a. Allowable moment carr	rying capacity	= 0.2 kNm/ m	
	b. Allowable shear = 6.2 k	$\kappa N/m$		
	c. Permissible $EI = 1.1 \text{ kN}$	Jm²∕ m		
	d. Permissible deflection =	= 0.8 mm		
3.	For H-16 beam			
	a. Depth of H-16 beam =	160 mm		
	b. Flange of H-16 beam =	65 mm		
	c. Allowable moment carr	rying capacity	= 3 kNm	
	d. Allowable shear = 6 kN	1		
	e. Permissible $EI = 145 \text{ k}$	Nm ²		
	e. Permissible EI = 145 kf. Permissible deflection =			
4.		= 3.33 mm	07	
LC-CS-CA	f. Permissible deflection =	= 3.33 mm	07 Shear Force	Deflection
LC-CS-CA	f. Permissible deflection = For ISMC 100 see details f	= 3.33 mm from IS 800:20 Bending	101115-011 20111	Pl ³
SL No.	f. Permissible deflection = For ISMC 100 see details f	= 3.33 mm from IS 800:20 Bending Moment	Shear Force	$\delta = \frac{Pl^3}{3EI}$
SI. No.	f. Permissible deflection = For ISMC 100 see details f	= 3.33 mm from IS 800:20 Bending Moment	Shear Force	$\delta = \frac{Pl^3}{3EI}$
SL No.	f. Permissible deflection = For ISMC 100 see details f	= 3.33 mm from IS 800:20 Bending Moment M = Pl	Shear Force V = P	Pl ³
SL. No. 1.	f. Permissible deflection = For ISMC 100 see details f Loading condition	= 3.33 mm from IS 800:20 Bending Moment M = Pl	Shear Force	$\delta = \frac{Pl^3}{3EI}$ Pl^3
Sl. No. 1.	f. Permissible deflection = For ISMC 100 see details f Loading condition	= 3.33 mm from IS 800:20 Bending Moment M = Pl $M = \frac{Pl}{4}$	Shear Force V = P	$\delta = \frac{Pl^3}{3EI}$ Pl^3
SI. No. 1.	f. Permissible deflection = For ISMC 100 see details f Loading condition P \downarrow 1 P \downarrow 1 P \downarrow 1 For simply supported beam with	= 3.33 mm from IS 800:20 Bending Moment M = Pl $M = \frac{Pl}{4}$	Shear Force V = P	$\delta = \frac{Pl^3}{3EI}$ Pl^3
SI. No. 1. 2.	f. Permissible deflection = For ISMC 100 see details f Loading condition	= 3.33 mm from IS 800:20 Bending Moment M = Pl $M = \frac{Pl}{4}$	Shear Force V = P $V = \frac{P}{2}$	$\delta = \frac{Pl^3}{3EI}$ $\delta = \frac{Pl^3}{48EI}$
SL No.	f. Permissible deflection = For ISMC 100 see details f Loading condition P \downarrow 1 P \downarrow 1 P \downarrow 1 For simply supported beam with	= 3.33 mm from IS 800:20 Bending Moment M = Pl $M = \frac{Pl}{4}$	Shear Force V = P $V = \frac{P}{2}$	$\delta = \frac{Pl^3}{3EI}$ $\delta = \frac{Pl^3}{48EI}$
SI. No. 1. 2.	f. Permissible deflection = For ISMC 100 see details f Loading condition P \downarrow 1 P \downarrow 1 P \downarrow 1 For simply supported beam with	= 3.33 mm from IS 800:20 Bending Moment M = Pl $M = \frac{Pl}{4}$	Shear Force V = P	$\delta = \frac{Pl^3}{3EI}$ $\delta = \frac{Pl^3}{48EI}$

	Sl. No.	Loading condition	Bending Moment	Shear Force	Deflection		
	4. 		M = Pa	V = P	$\delta = \frac{Pa}{6EI} \times \left(\frac{3l^2}{4} - a^2\right)$		
	ea 5. ↓	wo point loads of magnitude ach. Span = I w I	$M = \frac{wl^2}{8}$	$V = \frac{wl}{2}$	$\delta = \frac{5wl^4}{384EI}$		
	6. ▲	or simply supported beam wi .D.L. Span of length <i>l</i> w <i>i</i> <i>l</i> <i>l</i> <i>l</i> <i>i</i> <i>l</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i>	$M = \frac{wl^2}{8}$	$V = \frac{5wl}{8}$	$\delta = \frac{wl^4}{185El}$		
	be le 7. ↓ Fc	eam with U.D.L. Equal span of l w $l \uparrow l \uparrow l \uparrow l$ or continuous beam with U.D	of $M = \frac{wl^2}{10}$.L.	$V = \frac{5wl}{8}$	$\delta = \frac{wl^4}{145EI}$		
	le 8. ↑ Co sp	ver its full length. Equal span ngth <i>l</i> . w t t t t t t ontinuous beam more than 3 bans with U.D.L. over its full ngth. Span of length <i>l</i> .	$M = \frac{wl^2}{10}$ As can be note		$\delta = \frac{wL^4}{145El}$ expression remains the y spaced supports.		
Q 11	Design the of 3 m. A as question 100 mm 2 for timber N/mm ² . N	e formwork for a columplywood of 12 mm theon 10). Timber of cross X 150 mm, and 150 mm r = 7 N/mm ² , permiss Aild steel tie rod of 16	ickness is availa ss sections 50 n m X 150 mm is ible shear stress 5 mm diameter	ble (take the j nm X 100 mr available. Pe s for timber = is available. I	X 400 mm, and a height permissible values same n, 100 mm X 100 mm, rmissible bending stress = 0.8 N/mm ² , E = 7700 Dead load of concrete =	18+2 = 20	
		$R = 2.5 \text{ m/h}, T = 15^{\circ}0$ a neat diagram for fir					
Q 12	question 1 thickness beams. Th	10) and CT410- props of 150 mm. H-16 be	(having capacite eams are to be mwork is 2.0 kN	ity of 14 kN) used as the N/m ² with 25	ns (see properties from as a staging for a slab secondary and primary % additional for impact	18+2 = 20	

Name:										
Enrolme	ent No:			UPES						
		UNIVERSITY O	F PETI	ROLEUM AND ENERGY STUDIES						
D				r Examination, May 2019						
-		me: B. Tech. Civil Engine	-	Seme						
Course		: Design of Formwork		Time	: 03 l					
Course Nos. of		: CEEG 318 : 5		Max.	Marks : 100					
1105.01			UFSTI	ONS ARE COMPULSORY						
		ISTRUCTIONS: ALL Q		SECTION A						
	ALL Q	UESTIONS ARE COMP		RY AND EACH QUESTION CARRIES	4 MARKS					
S. No.					Marks	СО				
Q 1	State 7	True/ False for the followin	g staten	nents:						
	a.			unnel are: curb, invert, wall, and arch.						
	b.			vork is characterized by labor intensive ar						
		time consuming operation			4	CO				
	с.			nomy in column formwork are number	of					
	d	repetition and steel formw		work						
Q 2		Table form is a part of fly the following:	ing torn	IWOIK.						
Q 2	materi									
	S.	COLUMN A	S.	COLUMN B						
	NO.		NO.							
	1	Cutting edge	Α	Used for high rise structure: jump						
	2	Climbing formula	В	form	4	СО				
		Climbing formwork	Б	Assists the caisson in sinking below the ground or river bottom						
	3	Short span bridges	C	Canal lining, tunnel inverts, highway						
		Short spun ondges		projects, etc.						
	4	Horizontal slipform is	D	Simple slab arrangements						
		used for								
Q 3	What i	s tunnel form system? State	e the two	o disadvantages of tunnel form system.	2+2 = 4	СО				
Q 4	What i	s flying form system? State	e the two	o advantages of flying form system.	2+2 = 4	СО				
Q 5	What i	s slipform? What are the m	nain con	ponents of horizontal slip form? For which	-					
_		res horizontal slipform is u	sed.		=4					
				SECTION B						
	ALL Q	UESTIONS ARE COMP	ULSOF	RY AND EACH QUESTION CARRIES	10 MARKS					
Q 6	Draw	a qualitative diagram for	the con	nventional slab formwork. Also, name a		СО				
	compo	10 CO								

	List out the various reasons for formwork failure.		
Q 9	What measures should be adopted to achieve economy in column formwork construction? Discuss the reasons for case study of toppling of prestressed girder during construction at a major bridge on Banganga River.	6+4 =10	
	SECTION-C ATTEMPT ANY TWO OUESTIONS AND EACH OUESTION CARDIES 20 M		
Q 10	ATTEMPT ANY TWO QUESTIONS AND EACH QUESTION CARRIES 20 M Check the adequacy of wall formwork for the following details and data:	IAKKS	
	 12 mm thick plywood is used, H-16 beam @ 250 mm c/c distance has been used as studs, ISMC 100 double walers back to back with 50 mm gap has been used @ 1200 mm c/c distance, and 16 mm tie rod @ 1200 mm c/c with yield stress 250 MPa has been used. The following data is also available: 		
	 5. For concrete pressure by using CIRIA method h. D, weight density of concrete = 25 kN/m³ i. R, rate of rise = 1 m/h j. Temperature of concrete = 25 °C k. H, vertical form height = 6.15 m l. H, vertical pour height = 6 m 		
	 m. Shape constant = 1 n. Concrete constituent factor = 0.3 6. For 12 mm plywood e. Allowable moment carrying capacity = 0.2 kNm/ m f. Allowable shear = 6.2 kN/ m g. Permissible EI = 1.1 kNm²/ m h. Permissible deflection = 0.8 mm 7. For H-16 beam g. Depth of H-16 beam = 160 mm h. Flange of H-16 beam = 65 mm i. Allowable moment carrying capacity = 3 kNm j. Allowable shear = 6 kN k. Permissible EI = 145 kNm² l. Permissible deflection = 3.33 mm 8. For ISMC 100 see details from IS 800:2007 	20	СО

SL No.	Loading condition	Moment M = Pl	Shear Force V = P	nu3	
1.	P	M = Pt		$\delta = \frac{Pl^3}{3EI}$	
	1			in hanson	
2.	Ŷ	$M = \frac{Pl}{4}$	$V = \frac{P}{2}$	$\delta = \frac{Pl^3}{48EI}$	
	1/2 1/2			and the second second	
	For simply supported beam with concentrated load <i>P</i> at its centre				
3.	Ļ	$M = \frac{Pab}{l}$	$V = \frac{Pa}{l}$	$\delta = \frac{Pb}{El} \times \left(\frac{l^2}{16} - \frac{b^2}{12}\right)$	
				- Hate is	
	$\operatorname{Span} = l = a + b$				
Sl. No.	Loading condition	Bending Moment	Shear Force	Deflection	
4.	$ \begin{array}{c} P & P \\ \downarrow & \downarrow \\ \uparrow^{a} & {}^{a} \end{array} $	M = Pa	V = P	$\delta = \frac{Pa}{6EI} \times \left(\frac{3l^2}{4} - a^2\right)$	
5.	Two point loads of magnitude P each. Span = l W	.2	val	e 194	
	For simply supported beam with	$M = \frac{wl^2}{8}$	$V = \frac{an}{2}$	$\delta = \frac{5wl^4}{384EI}$	
6.	U.D.L. Span of length <i>l</i>	$M = \frac{wl^2}{8}$	$V = \frac{5wl}{wl}$	$\delta = \frac{wl^4}{185EI}$	
	Two span uniformly supported	$M = \frac{1}{8}$	8	0- <u>185E</u> I	
	beam with U.D.L. Equal span of length <i>l</i>				
7.		$M = \frac{wl^2}{10}$	$V = \frac{5wl}{8}$	$\delta = \frac{wl^4}{145EI}$	
	For continuous beam with U.D.L. over its full length. Equal span of length <i>l</i> .				
8.		$M = \frac{wl^2}{10}$	$V = \frac{5wl}{8}$	$\delta = \frac{wL^4}{145EI}$	
-	Continuous beam more than 3 spans with U.D.L. over its full length. Span of length <i>l</i> .		d from above, the o than three equally	expression remains the spaced supports.	
			. 250	350 mm, and a height	18+2

	as question 10). Timber of cross sections 50 mm X 100 mm, 100 mm X 100 mm, 100 mm X 150 mm, and 150 mm X 150 mm is available. Permissible bending stress for timber = 7 N/mm ² , permissible shear stress for timber = 0.8 N/mm ² , E = 7700 N/mm ² . Mild steel tie rod of 16 mm diameter is available. Dead load of concrete = 26 kN/m^3 , R = 2m/h, T = 15°C, C _w XC _c = 1 (use ACI formula). Also draw a neat diagram for final design with proper detailing.		
Q 12	Design a slab formwork using 12 mm plywood, H-16 beams (see properties from question 10) and CT410- props (having capacity of 16 kN) as a staging for a slab thickness of 150 mm. H-16 beams are to be used as the secondary and primary beams. The live load on the formwork is 2.0 kN/m^2 with 35 % additional for impact (w.r.t live load). The formwork load is 0.4 kN/m^2 . Also draw a neat diagram for final design with proper detailing.	18+2 = 20	