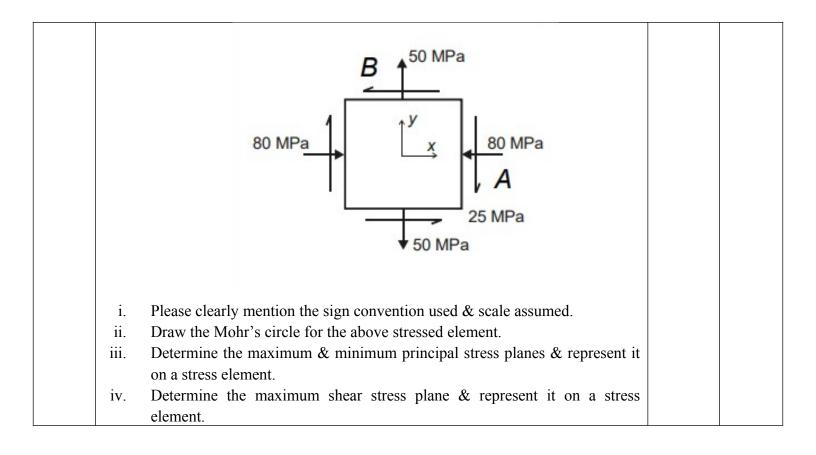

Name:				
Enrolme	Enrolment No:			
	UNIVERSITY OF PETROLEUM AND ENERGY STUDI	ES		
n	End Semester Examination, May 2019		X / T	
Progran Course I		nester	: VI : 03 hrs	
Course		ie x. Mark		
	page(s) : Three only	. x. wiai f	xs. 100	
-	tions: All questions are compulsory. <i>Answer should be precise & to the point.</i>			
	anse iniquestions are compared y. These of shown be precise a to the point			
	SECTION A			
S. No.			Marks	CO
Q 1	i. List out the key components of a Geomechanical Earth Model. Define	e each		CO1
	term briefly.			
	ii. Represent stress state at the wellbore in cartesian & cylindrical coord	dinate		CO2
	systems.			
		foru	4 marks	
			each (4x5=20)	CO3
	four components on it.		(1110 20)	
	iv. Define in-situ stresses & explain their criticality in the failure analy	sis of		CO1
	rock material.			
	v. Link the knowledge of Geomechanics for the future applications in	vour		CO1
	branch of engineering.	5		
	SECTION B			
0.2				
Q 2	 Explain Mohr-Coulomb & Mogi-Coulomb failure criterion. Also highlight which are used more the others and give reasons. 		4 + 2 + 2	
	 Why the results of Mogi-Coulomb failure criterion could be a safe app 	roach	4+3+3	CO2
	in drilling of the wellbore.	noach		
Q 3	Drilling & hydraulic fracturing are affected by the stress changes accompa	inying	5+5	CO2
	depletion.			
	List out the expected drilling difficulties when there is need to a	drill		
1	through depleted reservoirs to reach deeper formations.			

	 Explain probable solution to overcome it. 		
Q 4	It is a common practice in the petroleum industry to assume a horizontal and vertical principal in-situ stress state, it should be noted that the three principal stresses may not always take a horizontal and vertical orientation. This can be confirmed by analyzing image logs where the deviations may occur. In such a case the in-situ stresses have to be transformed to a horizontal and vertical principal orientation. Write equations defining all transformed stress components.	10	CO3
Q 5	For an oil field, where a vertical well is drilled to a maximum depth of 11,500 ft, the average specific gravity and pore pressure gradient are given as 2.2 and 0.36 psi/ft, respectively. Assuming the Biot's constant and Poisson's ratio as 0.9 and 0.26, respectively, calculate the overburden and horizontal in-situ stresses for the surrounding rock formation at the bottom of the vertical well.	10	CO3
	SECTION-C		
Q 6	 An oil field has a vertical well in a sandstone reservoir with variable rock strength. One of the important issues is to determine the need for sand control equipment, such as screens. Investigate the possibility of sand production for both initial conditions and the depleted phase of the field. Use the following data as obtained from the field. Depth (m) 1000 Overburden Stress (s.g.) 1.80 Max/Min Horizontal Stresses (s.g.) 1.50/1.50 Initial Pore Pressure (s.g.) 1.03 Depleted Pore Pressure (s.g.) 0.55 	8+12	CO4
Q7	Depicted Pole Pressure (s.g.) 0.55 Rock Cohesive Strength (s.g.) 0.40 Rock Friction Angle (Degrees) 30Two principal stresses are shown, $\sigma 1$ and $\sigma 2$. If $\sigma 1$ is 20 MPa and $\sigma 2$ is 6 MPa.	10+10	CO1
× '		10.10	201

Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019


Program Name:	B.Tech GIE & B.Tech GSE	Semester	: VI
Course Name	: Geomechanics	Time	: 03 hrs
Course Code	: GSEG 312	Max. Marl	ks: 100
Nos. of page(s)	: Three only		

Instructions: All questions are compulsory. *Answer should be precise & to the point.*

SECTION A

S. No.			Marks	CO	
Q 1	i.	List out the key applications of Geomechanics. Briefly explain any one out		CO4	
		of them.			
	ii.	What is the relation between angle of friction and fracture angle? Support		CO2	
		your answer with a sketch.	4 marks		
	iii.	Which stress is developed when the drill bits are taken out from the well? $\begin{bmatrix} ea \\ (4x) \end{bmatrix}$			
	iv.	Define in-situ stresses & explain their criticality in the failure analysis of	(1110 20)	CO4	
		rock material.		CO1	
	v.	Link the impact of far field stresses on local conditions around the wellbore			
		issues related to drilling.		CO1	
		SECTION B			
Q 2	i.	Explain Mohr-Coulomb & Mogi-Coulomb failure criterion. Also highlight	6	CO2	
		which are used more the others and give reasons.	0		
	ii.	The so-called compaction model has been very useful in geomechanics	4	CO3	
0.2		analysis. Write the key assumptions.			
Q 3	failur	uring and mechanical collapse are the two main mechanisms of borehole			
	Tantai	с.	1.5		
	i.	Explain briefly under which conditions these may occur in a wellbore.	4+6	CO3	
	ii.	Represent wellbore differential pressure stability behavior identifying			
		underbalanced and overbalanced critical points of stability and failure.			
Q 4	It is	a common practice in the petroleum industry to assume a horizontal and	10	CO1	
	vertic	al principal in-situ stress state, it should be noted that the three principal			

Q7	identify th ii. Evaluate t	he intact and failure regions. The magnitude of cohesive streng	th and angle of internal friction.	5+5	CO3 CO2
	identify the intact and failure regions.				
	1 2 3 4	0 0-6 1 2	10 11·5 13·5 15·5		
	Test No.	Minimum Compressive Stress σ_{3} (ksi)	Maximum Compressive Stress σ_1 (ksi)		
	 ii. Determine normal and shear stresses at the bottom of the wellbore wall in a Cartesian coordinate system. (b) Using the data given in the table : 				
Q 6	 (a) For an oil field, where a vertical well is drilled to a maximum depth of 11,400 ft, the average specific gravity and pore pressure gradient are given as 2.4 and 0.33 psi/ft, respectively. Assuming the Biot's constant and Poisson's ratio as 0.9 and 0.26, respectively. i. Calculate overburden and horizontal stresses 				CO4
		SECTIO	N-C		
Q 5		slip and reverse faulting stre	of stress magnitudes with depth ess regimes for hydrostatic and		CO1
	the in-situ stresse orientation.		iations may occur. In such a case horizontal and vertical principal omponents.		
		and a nonzontal and	vertical orientation. This can be		

