Name:

Enrolment No:

UNIVERSITY WITH A PURPOSE

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

SECTION A

Course: POWER PLANTS

Program: B. Tech Mechanical Engineering Course Code: MHEG 453

Semester: VIII Time: 03 hrs. Max. Marks: 100

	SECTION A			
S. No.		Marks	CO	
Q 1	Explain the flashed steam system with flow and T-s diagrams. How is binary cycle system different from it?		CO3	
Q 2	Draw layout of hydroelectric power plant and explain the basic elements of the plant.	5	CO4	
Q 3	Illustrate the following terms with reference to a nuclear reactor:			
	(i) Moderator (ii) Coolant	5	CO1	
	(iii) Control rods (iv) Reflector.			
Q 4	Describe characteristics; construction and working of the Benson high-pressure drum less boiler with the help of neat diagram.	5	CO2	
	SECTION B			
Q 5	A textile factory requires 10 t/h of steam for process heating at 3 bar saturated and 1000kW of power, for which a back pressure turbine of 70% internal efficiency is to be used. Find the steam condition required at inlet of the turbine.	10	CO4	
Q 6	Draw flow duration and mass curve and explicate its merits and demerits.	10	CO2	
Q 7	The following data is applied for a hydro-electric power station :Catchment areaCatchment areaAnnual rain fall1200 mm;Available head220 m;Load factor45%;Yield factor to allow for run-off and evaporation loss 55%;Power plant efficiency72%.Calculate (i) average power produced (ii) Capacity of the power plant.	10	CO3	
Q 8	A boiler produces 2000 kg of dry and saturated steam per hour at 10 bar and feed water is heated by an economizer to a temperature of 110° C. 225 kg of coal of a calorific value of 30100 kJ/kg are fired per hour. If 10% of coal remains Unburnt, find the thermal efficiency of the boiler and boiler and grate combined. OR Explain the effect of intercooling and reheating in a gas turbine plant with line and	10	CO 4	

	T-S diagrams.				10			
						CO 3		
			SECTION-C					
Answe Q 9	r any two questions The run off data of a river at a particular site is tabulated as below.							
Q)	The full off data of a fiver at a particular site is tabulated as below.							
	Month	Mean discharge	Month	Mean discharge				
		(millions of cu.m.)		(millions of cu.m.)				
	January	30	July	80		CO 5		
	February	25	August	100				
	March	20	September	110	20			
	April	0	October	65				
	May	10	November	45				
	June	50 he hydrograph and find th	December	30				
	(b) Draw f (c) Find th							
		eration is 86 per cent. Ass						
Q 10	Steam at 40 h	0						
	turbine to 2 ba at 2 bar, 0.87 energy source. and the combi isentropic effic of the plant. A C from the sat	ar with an isentropic effic quality and a flow rate of This steam is mixed adia ined flow then expands i ciency of 78%. Determine ssume that 5500kg/h of st urated feed water at 0.1 ba	iency of 83%. A control of 2700 kg/h is available to a batically with the n a low-pressure the power output team is generated far. Had the geother	expands in a high-pressure continuous supply of steam vailable from a geothermal e.h.p. turbine exhaust steam turbine to 0.1 bar with an t and the thermal efficiency in the boiler at 40 bar, 500 ^o rmal steam not been added, of the plant? Neglect pump	20	CO 5		
Q11	turbine to 2 ba at 2 bar, 0.87 energy source. and the combi- isentropic effice of the plant. A C from the satt what would ha work. A Morse test of cm and stroke The output is f Where W, the	ar with an isentropic effic quality and a flow rate of This steam is mixed adia ined flow then expands i ciency of 78%. Determine ssume that 5500kg/h of st urated feed water at 0.1 ba ave been the power output	iency of 83%. A cost of 2700 kg/h is available at a low-pressure e the power output team is generated for an efficiency of the compression – h gave the following the relation of the speed, N is	continuous supply of steam vailable from a geothermal e.h.p. turbine exhaust steam turbine to 0.1 bar with an t and the thermal efficiency in the boiler at 40 bar, 500° rmal steam not been added, of the plant? Neglect pump	20	CO 5 C04		
Q11	turbine to 2 baat 2 bar, 0.87energy source.and the combinisentropic efficientof the plant. AC from the satewhat would havework.A Morse test ofcm and strokeThe output is forWhere W, themechanical effect	ar with an isentropic effic quality and a flow rate of This steam is mixed adia ined flow then expands is ciency of 78%. Determine ssume that 5500kg/h of st urated feed water at 0.1 bat ave been the power output	iency of 83%. A cost of 2700 kg/h is available at a low-pressure e the power output team is generated for an efficiency of the compression – h gave the following the relation of the speed, N is engine.	continuous supply of steam vailable from a geothermal h.p. turbine exhaust steam turbine to 0.1 bar with an t and the thermal efficiency in the boiler at 40 bar, 500 ^o rmal steam not been added, of the plant? Neglect pump - ignition engine of bore 40 ng readings. ion bp= WN / 180 in rpm. Calculate ip,				
Q11	turbine to 2 baat 2 bar, 0.87energy source.and the combinisentropic efficiencyof the plant. AC from the satewhat would havework.A Morse test ofcm and strokeThe output is forWhere W, themechanical efficiencyCondition	ar with an isentropic effic quality and a flow rate of This steam is mixed adia ined flow then expands i ciency of 78%. Determine ssume that 5500kg/h of st urated feed water at 0.1 ba ave been the power output on a 12 cylinder, two-stro 50 cm running at 200 rpm found from the dynamome brake load is in Newton a ficiency and bmep of the e Brake load (Newton)	iency of 83%. A cost 2700 kg/h is available at a low-pressure e the power output team is generated for an efficiency of the compression – h gave the following the relation of the speed, N is engine.	continuous supply of steam vailable from a geothermal h.p. turbine exhaust steam turbine to 0.1 bar with an t and the thermal efficiency in the boiler at 40 bar, 500 ^o rmal steam not been added, of the plant? Neglect pump - ignition engine of bore 40 ng readings. ion bp= WN / 180 in rpm. Calculate ip, Brake load (Newton)				
Q11	turbine to 2 baat 2 bar, 0.87energy source.and the combinisentropic efficiencyof the plant. AC from the satewhat would havework.A Morse test ofcm and strokeThe output is forWhere W, themechanical efficienceConditionAll firing	ar with an isentropic effic quality and a flow rate of This steam is mixed adia ined flow then expands is ciency of 78%. Determine ssume that 5500kg/h of st urated feed water at 0.1 bas ave been the power output on a 12 cylinder, two-strop 50 cm running at 200 rpm found from the dynamome brake load is in Newton a ficiency and bmep of the e Brake load (Newton) 2040	iency of 83%. A control of 2700 kg/h is available at a low-pressure output team is generated for a low-pressure of the power output team is generated for an efficiency of the compression – h gave the following the relation of the speed, N is the engine.	continuous supply of steam vailable from a geothermal e.h.p. turbine exhaust steam turbine to 0.1 bar with an t and the thermal efficiency in the boiler at 40 bar, 500° rmal steam not been added, of the plant? Neglect pump - ignition engine of bore 40 ng readings. ion bp= WN / 180 in rpm. Calculate ip, Brake load (Newton) 1835				
Q11	turbine to 2 baat 2 bar, 0.87energy source.and the combinisentropic efficiencyof the plant. AC from the sattwhat would havework.A Morse test ofcm and strokeThe output is fWhere W, themechanical efficiencyConditionAll firingIst cylinder	ar with an isentropic effic quality and a flow rate of This steam is mixed adia ined flow then expands i ciency of 78%. Determine ssume that 5500kg/h of st urated feed water at 0.1 ba ave been the power output on a 12 cylinder, two-stro 50 cm running at 200 rpm found from the dynamome brake load is in Newton a ficiency and bmep of the e Brake load (Newton) 2040 1830	iency of 83%. A cost 2700 kg/h is available at a low-pressure e the power output team is generated at and efficiency of the compression – h gave the following the related and the speed, N is engine.	continuous supply of steam vailable from a geothermal e.h.p. turbine exhaust steam turbine to 0.1 bar with an t and the thermal efficiency in the boiler at 40 bar, 500° rmal steam not been added, of the plant? Neglect pump - ignition engine of bore 40 ng readings. ion bp= WN / 180 in rpm. Calculate ip, Brake load (Newton) 1835 1860				
Q11	turbine to 2 baat 2 bar, 0.87energy source.and the combinisentropic efficitof the plant. AC from the satewhat would havework.A Morse test ofcm and strokeThe output is fWhere W, themechanical efficitionAll firingIst cylinder2nd cylinder	ar with an isentropic effic quality and a flow rate of This steam is mixed adia ined flow then expands in ciency of 78%. Determine ssume that 5500kg/h of st urated feed water at 0.1 back ave been the power output on a 12 cylinder, two-strop 50 cm running at 200 rpm found from the dynamome brake load is in Newton a ficiency and bmep of the efficiency and bmep of the efficiency 2040 1830 1850	iency of 83%. A control of 2700 kg/h is available at a low-pressure of the power output team is generated for an efficiency of the compression – the geother and efficiency of the compression – the gave the following the relation of the speed, N is the condition of the cylinder of the c	continuous supply of steam vailable from a geothermal h.p. turbine exhaust steam turbine to 0.1 bar with an t and the thermal efficiency in the boiler at 40 bar, 500° rmal steam not been added, of the plant? Neglect pump - ignition engine of bore 40 ng readings. ion bp= WN / 180 in rpm. Calculate ip, Brake load (Newton) 1835 1860 1820				
Q11	turbine to 2 baat 2 bar, 0.87energy source.and the combinisentropic efficiencyof the plant. AC from the sattwhat would havework.A Morse test ofcm and strokeThe output is fWhere W, themechanical efficiencyConditionAll firingIst cylinder	ar with an isentropic effic quality and a flow rate of This steam is mixed adia ined flow then expands i ciency of 78%. Determine ssume that 5500kg/h of st urated feed water at 0.1 ba ave been the power output on a 12 cylinder, two-stro 50 cm running at 200 rpm found from the dynamome brake load is in Newton a ficiency and bmep of the e Brake load (Newton) 2040 1830	iency of 83%. A cost 2700 kg/h is available at a low-pressure e the power output team is generated at and efficiency of the compression – h gave the following the related and the speed, N is engine.	continuous supply of steam vailable from a geothermal e.h.p. turbine exhaust steam turbine to 0.1 bar with an t and the thermal efficiency in the boiler at 40 bar, 500° rmal steam not been added, of the plant? Neglect pump - ignition engine of bore 40 ng readings. ion bp= WN / 180 in rpm. Calculate ip, Brake load (Newton) 1835 1860				

6th cylinder 1855 All firing 2060	
-----------------------------------	--