Name:

Enrolment No:

UNIVERSITY WITH A PURPOSE

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Course: POWER PLANT ENGINEERING

Semester: VI Time 03 hrs. Max. Marks: 100

Program: B. TechMechanical Engineering & Mechanical Engineering (Specialization)Course Code:MHEG 455Main

	SECTION A		
S. No.		Marks	CO
1	Illustrate boiling water reactor with a line diagram and compare over pressurized water reactor.	5 M	CO1
2	Explain working procedure of Binary Cycle system with flow and T-S diagrams.	5 M	CO4
3	Describe characteristics, construction and working of Babcok and Wilcox high-pressure boiler.	5 M	CO3
4	Relate diesel power plants over thermal power plants	5 M	CO1
	SECTION B		
5	A gasoline engine working on four stroke develops a brake power of 20.9 Kw. A Morse test was conducted on this engine and the brake power (kW) obtained when each cylinder was made inoperative by short circuiting the spark plug are 14.9, 14.3, 14.8 and 14.5 respectively. The test was conducted at constant speed. Find the indicated power, mechanical efficiency and bmep when all the cylinders are firing. The bore of the engine is 75 mm and the stroke is 90 mm. The engine is running at 3000 rpm.	10 M	CO4
6	Draw layout of hydroelectric power plant and explain the basic elements of the plant.	10 M	CO1
7	Explain the Following (a) Electro static precipitator working principle (b) Liquid – dominated double flash system	5 M 5 M	CO3
8	In a gas turbine, plant operating on a Joule cycle maximum and minimum temperature are 825° C and 25° C. The pressure ratio is 4.5. Calculate the specific work out put, cycle efficiency and work ratio. Assuming isentropic efficiencies of the com pressure and the turbine at 85 and 90 percent respectively. If the rating of the turbine is 1300 k W, what is the mass flow in kg/sec? Neglect the mass flow of fuel. Take C _P =1.005 k J/kg K.	10 M 10 M	CO2
	OR In a cogeneration plant, the power load is 5.6 MW and the heating load is 1.163 MW. Steam is generated at 40 bar and 500° C and is expanded isentropically through a turbine to a condenser at 0.06 bar. The heating load is supplied by extracting steam		

	bar and then p the boiler in t boiler in t/h it 88%, (d) the l	ne at 2 bar, which condensed in pumped back to the boiler. Con /h, (b) the heat input to the bo f a coal of calorific value 25 M neat rejected to the condenser, (he temperature rise of water is 6	mpute iler in IJ/kg is (e) the	(a) the st kw, (c) s burned rate of f	team generation capacity of the fuel burning rate of the and the boiler efficiency is low of cooling water in the		
			TION	-C			
Answe 9	er any two quest		a tahuul				
1	Month	ta of a river at a particular site is Mean discharge per month (millions of cu.m.)			Mean discharge per month (millions of cu.m.)		CO5
	January	40	July		75		
	February	25	Augu	st	100		
	March	20	Septe		110		
	April	10	Octol		60	20 1	
	May	0	Nove		50	20 M	
	June	50	Dece		40		
10	Та	d overall efficiency of generation ke each month of 30 days. llowing results were obtained in			engine:		
	Г	Gas used		= 0.16 r	n ³ /min at NTP		
		Calorific value of gas at NTP		= 14 M.			
		Density of gas at NTP		= 0.65 k			
	- F	Air used		= 1.50 k			
		Specific heat of exhaust gas		= 1.0 kJ	0		
		Temperature of exhaust gas		$=400^{0}$	C	20 M	CO4
		Room temperature		$=20 \ ^{0}C$		20 M	
		Cooling water per minute		= 6 kg			
		Specific heat of water		= 4.18 k			
		Rise in temperature of co	oling	$= 30 {}^{0}\mathrm{C}$			
		water					
				=12.5 k			
	BP = 10.5 kW Draw a heat balance sheet for the test on per hour basis in kJ.						
	Draw	a near balance sneet for the test	t on pe	i nour da	ISIS III KJ.		

|--|