Name:

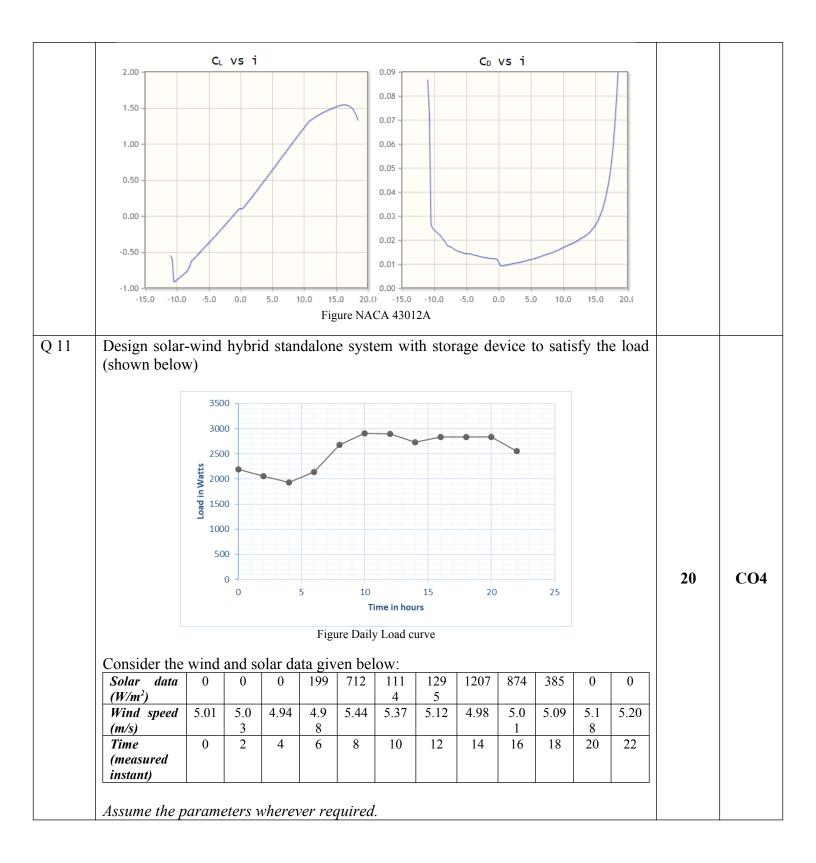
Enrolment No:

UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2019

Programme Name: M. Tech REE


Course Name	: Wind Energy Technology	Time : 03 hrs
Course Code	: EPEC 8008	Max. Marks : 100
Nos. of page(s)	: 3	
Instructions: Al	ll questions are mandatory. Assume parameters wher	ever required and mention the same.

Semester : II Time : 03 hrs Max. Marks : 100

SECTION A

S. No.		Marks	СО		
Q 1	State the major heat producers in the nacelle of large wind power plant	4	CO1		
Q 2	Calculate the required diameter of a wind turbine to generate 10 kW at a wind speed of 7 m/s and a rotor speed of 100 rpm. Assume power coefficient as 0.4, mechanical system efficiency as 0.9 and electrical system efficiency as 0.95.	4	CO2		
Q 3	Explain the stalling action of wind turbine blades using power verses wind speed characteristics.	4	CO3		
Q 4	Draw the equivalent circuit of Induction machine coupled to a wind turbine.	4	CO4		
Q 5	5 Explain in detail about the environmental impacts created by wind farms in the coastal region of India.				
	SECTION B				
Q 6	An HAWT rotates at 100 rpm and the wind speed through the blade is 6.5 m/s . For a pitch angle of 4 degree at the inner edge (varying at 0.5 degree till out-edge), plot a graph showing the variation of the angle of incidence <i>i</i> with the radial distance along a blade.	10	CO2		
Q 7	The wind data for a site in terms of percentage of time over a year for different speed groups is given below:Speed (m/s) group $0 < v \le 3$ $3 < v \le 6$ $6 < v \le 9$ $9 < v \le 12$ $12 < v \le 16$ $16 < v \le 20$ Percentage timeof 12.36 28.3 29.37 18.96 9.31 1.7 Calculate the annual average power if the wind passing normally through the swept area of a turbine of diameter 30m. Assume the air density as 1.225 kg/m^3 .	10	CO3		
Q 8	A four-pole induction generator is rated at 300kVA and 480V. It has the following parameters $R_s=0.015\Omega R_R^*=0.0132\Omega X_s=X_R^*=0.12\Omega X_M=8\Omega$. How much power does it produce at a slip of -0.02? Also, find the torque, power factor and efficiency. (Ignore mechanical losses)	5+5	CO4		
Q 9	The basic information about a wind farm is given below:	10	CO5		

	Wind farm capacity (MW)	50		
	Capital Investment (€)	7000000		
	Period of operation (years)	25		
	Decommissioning cost (€)	3000000		
	O & M costs (€/kWh)	0.0091		
	Capacity factor	0.25		
	Electricity selling price, tariff (€/kWh)	0.08		
	Annual discount rate (%)	8		
	Inflation rate (%)	3		
	Use the above information given and find i. AEP	l the following		
	ii. O & M cost in euro for each year	(€/year)		
	iii. Annual revenue from selling the e			
	iv. Annual net income (€/year)			
	v. NPV of the wind farm			
		SECTION-C		
Q 10	Calculate the total thrust and aerodynam	20	CO2	
	turbine at a wind velocity of 9m/s. The m	achine specifications are as follows:		
	Diameter = 9m			
	Rotational speed = 100 rpm			
	TSR = 5			
	Chord length = $0.45m$, uniform throughout	ut the blade		
	Pitch angle = 5° , no twist	ut the blade		
	e ,	a d a = 0.5 m		
	Distance from axis to inner edge of the bl			
	Aerofoil section = NACA 43012A (show	n in figure)		
	Note:			
	1. Divide the blade into four number of	sections.		
	2. Assume relevant values of C_L and C_E	if attack angle exceeds the given range		

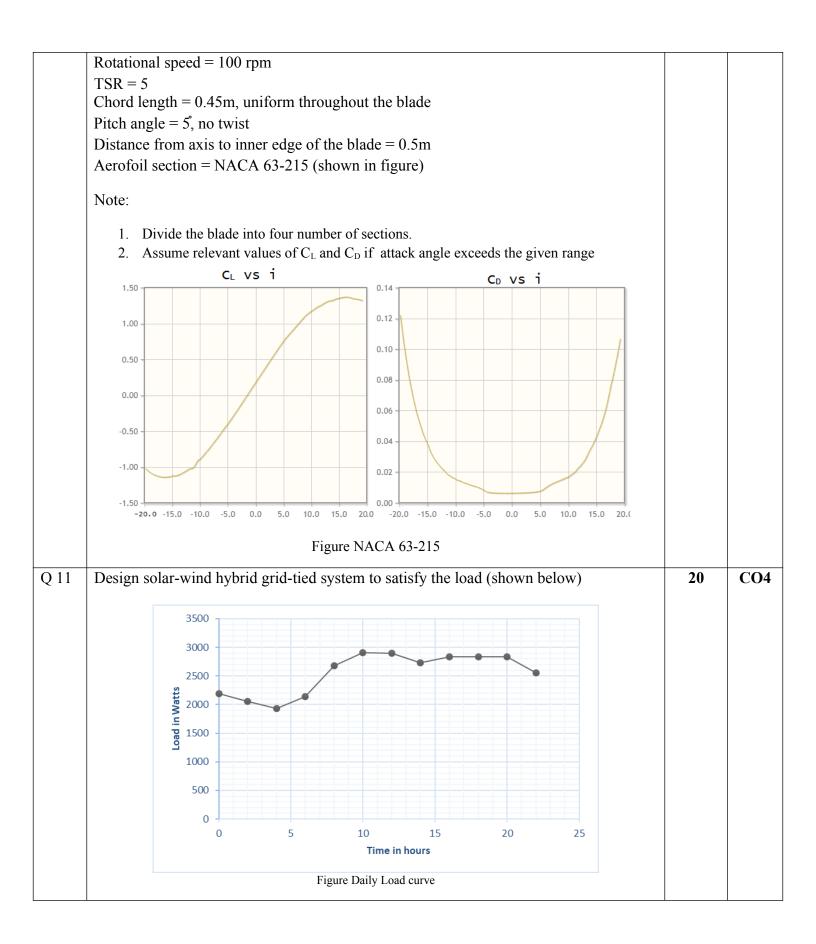
Name: **Enrolment No:**

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2019

Programme Name: M. Tech REE

Course Name : Wind Energy Technology : EPEC 8008


Semester : II Time : 03 hrs Max. Marks: 100

Nos. of page(s) :3

Course Code

Instructions: All questions are mandatory. Assume parameters wherever required and mention the same.
SECTION A

S. No.		Marks	СО
Q 1	Describe the role of SCADA system in a WPP	4	CO1
Q 2	An HAWT has a diameter of 10m. When the undisturbed wind speed of 10 m/s makes the turbine to rotate at 320 rpm and produces 10 kW of mechanical power; calculate the following: a. TSR b. C _p	4	CO2
Q 3	Distinguish between the three major methods of aerodynamic control.	4	CO3
Q 4	Discuss various applications of Wind Energy Conversion System.	4	CO4
Q 5	Explain the term Levelized cost of electricity (LCOE).	4	CO5
	SECTION B		
Q 6	Compare the WT performance between Momentum theory and Blade Element theory.	10	CO2
Q 7	The annual average wind velocity at a height of 10m over a flat terrain is 6 m/s. The boundary layer exponent is 0.13. Find the annual average power density (W/m^2) in the wind at a height of 50m. Assume the Rayleigh distribution as an approximation to the wind velocity-duration distribution over the terrain and 1.225 kg/m ³ as the density of air.	10	CO3
Q 8	 a. Discuss the necessary conditions/constraints to be considered while designing a wind-diesel hybrid system for any given site. b. Explain the off-shore wind energy scenario of India. 	5+5	CO4
Q 9	a. Explain the impact of wind resource assessment on the economics of wind farmsb. Explain in detail about the various components of cost involved in Wind farm project timeline.	10	C05
	SECTION-C		
Q 10	Calculate the total thrust and aerodynamic power developed in a three-blade wind turbine at a wind velocity of 9m/s. The machine specifications are as follows Diameter = 9m	20	CO2

(W/m²) Wind 5.01 5.0 speed (m/ 5.0 5.0	03 4.9	4.00		4	5	7				
	03 4.9	1 00			5	/				
	4	4.98	5.44	5.37	5.12	4.98	5.01	5.09	5.18	5.20
S)										
Time02(measure1d instant)	4	6	8	10	12	14	16	18	20	22