Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Course: Performance Analysis of Electrical Equipment

Program: M. Tech. - ES Course Code: EPEC 8001 Semester: II Time 03 hrs. Max. Marks: 100

SECTION A			
S. No.		Marks	СО
Q 1	The input power to a fan is 30kW for a 2500 Nm ³ /hr fluid flow. The fan pulley diameter is 300mm. If the flow to be reduced by 15% by changing the fan pulley, what should be the diameter of fan pulley and power input to fan.	4	CO1
Q 2	What are the advantages of FRP blades over the conventional blades for cooling tower fans?	4	CO2
Q 3	Calculate the rotor I ² R losses using the following data: Slip = 4% Stator input = 3000 W Stator I ² R losses = 100 W Core loss = 50 W	4	CO3
Q 4	Explain the terms solar reflectance and fenestration.	4	CO4
Q 5	What is the significance of overall heat transfer coefficient (U-factor) in building energy consumption?	4	CO4
	SECTION B		
Q 6	Briefly explain with a sketch the concept of pump head flow characteristics and system resistance.	10	CO2
Q 7	A water pump is delivering 300 m ³ /hr flow at 40 meter head at ambient conditions. The pump shaft power is 52kW. The impeller diameter is trimmed by 8%. Find out the new water flow, head and pump shaft power at the changed condition.	10	CO2
Q 8	During an energy audit, following data were obtained on a 3-phase induction motor:	10	CO3

	Rated values: 37 kW, 415V, 66 A, 0.88 pf		
	Operating values: 410 V, 49A, 0.76 pf		
	Note: Motor efficiency in this particular case does not change between $50-100$ %		
	loading.		
	The plant operates for 7000 hours per year with the electricity cost of Rs. 6.00 per		
	unit.		
	It is proposed to replace the existing motor by a 30 kW energy efficient motor with $020/$ efficiency.		
	92% efficiency.a) Determine the rated efficiency and the loading of the existing motor.		
	b) Calculate the loading with energy efficient motor.		
	c) If replacing the existing motor with energy efficient motor which costs Rs.75,000.		
	Determine the payback period for the investment required for the energy efficient		
	motor over the existing motor. Consider the salvage value of the existing motor as		
	Rs.10,000/.		
Q 9	Explain in detail the "Building Management System (BMS)" with the help of block	10	COA
	diagram.	10	CO4
	SECTION-C		
Q 10	A free air delivery test was carried out before conducting a leakage test on a		
	reciprocating air compressor in an engineering industry and following were the		
	observations:		
	Receiver capacity : 10 m^3		
	Receiver capacity: 10 m^3 Initial pressure: $0.2 \text{ kg} / \text{ cm}^2\text{g}$		
	Final pressure : $7.0 \text{ kg} / \text{ cm}^2\text{g}$		
	Additional hold-up volume : 0.2 m^3		
	Atmospheric pressure : $1.026 \text{ kg} / \text{cm}^2 \text{ abs.}$		
	Compressor pump-up time : 4.5 minutes		
	The following was observed during the conduct of leakage test during the lunch time		
	when no pneumatic equipment/ control valves were in operation:a) Compressor on load time is 30 seconds and unloading pressure is 7	20	C01
		20	
	ko/cm²o		
	kg/cm ² g b) Average power drawn by the compressor during loading is 90 kW		
	b) Average power drawn by the compressor during loading is 90 kW		
	b) Average power drawn by the compressor during loading is 90 kWc) compressor unload time and loading pressure are 70 seconds and 6.6		
	 b) Average power drawn by the compressor during loading is 90 kW c) compressor unload time and loading pressure are 70 seconds and 6.6 kg/cm² g respectively. 		
	 b) Average power drawn by the compressor during loading is 90 kW c) compressor unload time and loading pressure are 70 seconds and 6.6 kg/cm² g respectively. Find out the following: 		
	 b) Average power drawn by the compressor during loading is 90 kW c) compressor unload time and loading pressure are 70 seconds and 6.6 kg/cm² g respectively. 		
	 b) Average power drawn by the compressor during loading is 90 kW c) compressor unload time and loading pressure are 70 seconds and 6.6 kg/cm² g respectively. Find out the following: (i) Compressor output in m³/hr (neglect temperature correction) 		
	 b) Average power drawn by the compressor during loading is 90 kW c) compressor unload time and loading pressure are 70 seconds and 6.6 kg/cm² g respectively. Find out the following: (i) Compressor output in m³/hr (neglect temperature correction) (ii) Specific Power Consumption, kW/ m³/hr 		
	 b) Average power drawn by the compressor during loading is 90 kW c) compressor unload time and loading pressure are 70 seconds and 6.6 kg/cm² g respectively. Find out the following: (i) Compressor output in m³/hr (neglect temperature correction) (ii) Specific Power Consumption, kW/ m³/hr (iii) % air leakage in the system 		
SQ 11	 b) Average power drawn by the compressor during loading is 90 kW c) compressor unload time and loading pressure are 70 seconds and 6.6 kg/cm² g respectively. Find out the following: (i) Compressor output in m³/hr (neglect temperature correction) (ii) Specific Power Consumption, kW/ m³/hr (iii) % air leakage in the system (iv) leakage quantity in m³/hr 		

Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Course: Performance Analysis of Electrical Equipment

Program: M. Tech. - ES Course Code: EPEC 8001 Semester: II Time 03 hrs. Max. Marks: 100

SECTION A			
S. No.		Marks	CO
Q 1	An energy audit of a fan was carried out. It was observed that the fan was delivering 18,500 Nm ³ /hr of air with static pressure rise of 52 mm WC. The power measurement of the 3-phase induction motor coupled with the fan recorded 3.1 kW/ phase on an average. The motor operating efficiency was assessed as 88% from the motor performance curves. What would be the fan static efficiency?	4	CO1
Q 2	Estimate the cooling tower capacity (TR) with the following parameters Water flow rate through $CT = 120 \text{ m}^3/\text{h}$ SP. Heat of water = 1 k.Cal/kg °C Inlet water temperature = 37 °C Outlet water temperature = 32 °C Ambient WBT = 29 °C	4	CO2
Q 3	A 75 kW, 415 V, 140 Amp, 4 pole, 50 Hz, 3-phase squirrel cage induction motor has a full load efficiency of 87.6%. The measured operating motor terminal voltages in a 3-phase supply are 415 V, 418 V & 420 V. The current drawn in 3-phase supply are 137 Amp, 132 Amp & 137 Amp. Estimate the additional temperature rise of motor, due to unbalanced voltage supply.	4	CO3
Q 4	Explain the terms visible light transmittance and effective aperture of glazing.	4	CO4
Q 5	Explain briefly the meaning of solar heat gain coefficient.	4	CO4
	SECTION B		
Q 6	List down few energy conservation opportunities in pumping system.	10	CO2
Q 7	A pump is filling water in to a rectangular overhead tank of 5 m x 4 m with a height of 8 m. The inlet pipe to the tank is located at height of 20 m above ground. The	10	CO2

	 following additional data is collected : Pump suction : 3 m below pump level Overhead tank overflow line : 7.5 m from the bottom of the tank Power drawn by motor : 5.5 kW Motor efficiency η : 92% Time taken by the pump to fill the overhead tank upto overflow level : 180 minutes Assess the pump efficiency. 		
Q 8	 A 415 V, 15kW, 3-ph, 50Hz Induction motor operates at full load, with 88% efficiency and 0.85 power factor lagging: a) Find the current drawn by the motor b) If this motor is replaced by 92.5% energy efficient motor with 0.92 power factor, what will be the power savings in terms of k W and kVA? 	10	CO3
Q 9	List ten energy consumption measures in buildings.	10	CO4
	SECTION-C		
Q 10	 In an automobile industry one compressor of rated capacity of 1000cfm is operated to evaluate leakage quantity in the plant during a holiday when no equipment was using compressed air. FAD test was also carried out before conducting leakage test and found that the compressor is delivering output of 90% of rated capacity. The observation on leakage test are: a) Compressor was on full load for 8 min b) Compressor was unloaded for 48 min c) Compressor was consuming 144 kW Evaluate : a) Free air delivery b) specific power consumption c) % leakage in compressed air system d) Leakage quantity e) power lost due to leakage 	20	CO1
Q 11	Explain the function of Soft Starters in case of Induction Motor. Also explain its starting current and stress profile during starting with the help of diagrams.	20	СОЗ