

Q 13	Explain the use of GPS in Civil Engineering with reference to survey practices. Explain Napiers rule of Circular parts.	$\mathbf{1 0}$ each	$\mathbf{5}$

Name: Enrolment No:		1 UPES UNIVERSITY WITH A PURPOSE		
Cours Progra Cours Instru	UNIVERSITY OF PET End Semest Geomatics : B Tech Civil Engineering Code: CIVL 2004 ions:	D ENERGY STUDIES n, May 2019 Semester: Time 03 hr Max. Mark	100	
SECTION A (Answer all questions)				
S. No.			Marks	CO
Q 1	What are the different types of errors?		4	1
Q 2	How is fieldwork important in survey?		4	2
Q 3	Draw the geometry of Vertical aerial pho		4	3
Q 4	Define Visual image interpretation.		4	4
Q 5	Define solar and mean solar time.		4	5
SECTION B (Answer any four questions)				
Q 6	Define laws of weights with proper exam		10	1
Q 7	In a triangle ABC , angles $\mathrm{A}, \mathrm{B}, \mathrm{C}$ were strength of the figure use table attached.	$44^{\circ}, 71^{\circ}$, calculate the	10	2
Q 8	A photograph was taken from an height 4.8 in and differential parallax is 0.7 in ,	average photo base length is height of the object.	10	3
Q 9	Discuss about various space platforms u various situations.	ding on their utility in	10	4
Q 10	Find the shortest distance between a station a station ($18^{\circ} 34^{\prime} \mathrm{N}, 97^{\circ} 06^{\prime} \mathrm{E}$) at Hyder along which the direction of the shortest Warangal.	$67^{\circ} 54^{\prime} \mathrm{E}$) at Warangal and to the azimuth of the line set out starting from	10	5
SECTION-C (Answer any two questions)				
Q 11	A The elevations of two proposed triang 140 m and 416 m above the MSL, respec at $\mathrm{C}, 60 \mathrm{~km}$ from A , which is likely to o A and B are inter-visible, and if not find that the line of sight clears C by 3 m .	A and B, 100 km apart, are ation of an intervening peak of sight, is 150 m . Ascertain if ired for the scaffold at B so	20	1
Q 12	Explain photographic co-ordinate system Derive parallax equations in stereo photo	tance of scaling in it.	$\begin{gathered} 10 \\ \text { each } \end{gathered}$	3
Q 13	How Total station is superior over other Explain celestial coordinate system.	ents explain its usage.	$\begin{gathered} 10 \\ \text { each } \end{gathered}$	5

			Table	2 21	Table	le for	determi	I	20	280	30°	35°				55°	60°	65°	70°	75°	80°	$83^{\prime \prime}$	90
	10°	12°	14°	16°	18°	20°	22°	24°	26°	28°	30°	35°	40°	45°									
10°	428	359																					
12°	359	295	253																				
14°	315	253	214	187																			
16°	284	225	187	162	143																		
18°	262	204	168	143	126	113																	
20°	245	189	153	130	113	100	91																
22°	232	177	142	119	103	91	81	74															
24°	221	167	134	111	95	83	74	67	61														
26°	213	160	126	104	89	77	68	61	56	51													
28°	206	153	120	99	83	72	63	57	51	47	43												
30°	199	148	115	94	79	68	59	53	48	43	40	33											
35°	188	137	106	85	71	60	52	46	41	37	33	27	23										
40°	179	129	99	79	65	54	47	41	36	32	29	23	19	16									
45°	172	124	93	74	60	50	43	37	32	28	25	20	16	13	11								
50°	167	119	89	70	57	47	39	34	29	26	23	18	14	$\left\lvert\, \begin{aligned} & 11 \\ & 10 \end{aligned}\right.$									
55°	162	115	86	67	54	44	37	32	27	24	21	$\begin{aligned} & 16 \\ & 14 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$										
60°	159	112	83	64	51	42	35	30	25		$\begin{aligned} & 19 \\ & 18 \end{aligned}$	$\left\lvert\, \begin{aligned} & 14 \\ & 13 \end{aligned}\right.$					4		2				
65°	155	109	80	62	49	40	33	28	$\left\lvert\, \begin{aligned} & 24 \\ & 23 \end{aligned}\right.$	$\begin{aligned} & 21 \\ & 19 \end{aligned}$	$\begin{aligned} & 18 \\ & 17 \end{aligned}$					4	3	2	2	1			
70°	152	106	78	60	48	38 37	${ }^{32}$	$\begin{aligned} & 27 \\ & 25 \end{aligned}$	$\begin{aligned} & 23 \\ & 21 \end{aligned}$	$\begin{aligned} & 19 \\ & 18 \end{aligned}$		11	8	6	4	3	2	2	1	1	1		
75°	150	104	76	58	46		$\left\lvert\, \begin{aligned} & 30 \\ & 29 \end{aligned}\right.$			17	15	10	7	5	4	3	2	2	1	1	0	0	
80°	147	102	74 73	57 55	45	36 34	28	24 23	19	16	14					2	2		1				
85°	145	100	73	55	4																		Contd.)

