Enrolment No:

Course:CHEM-1008 (Chemistry)(End Semester Examination May 2019)Programme:B.Sc (H) Physics/MathematicsSemester: IICourse Name:Chemical Energetics, Equilibria & Functional Group Organic Chemistry I

Time: 03 hrs.

Max. Marks:100

Instructions: Read all the below mentioned instructions carefully and follow them strictly:

- 1) Write your enrolment number on the top left of the question paper
- 2) Do not write anything on the question paper except your enrolment number
- 3) Attempt all part of a question at one place only
- 4) Internal choice is given for question number 9 and 11 only
 - Section A (Attempt all FIVE Questions)

1.	Calculate the pH of a solution obtained by mixing 30mL of 10 ⁻² N HCl and 50mL of 10 ⁻⁶ N NaOH.					
2.	The K_a of propionic acid is 1.34×10^{-5} . What is the pH of a solution containing 0.5M propionic acid and 0.5M sodium propionate? What happens to the pH of this solution when volume is doubled by the addition of water?					
3.	For the Haber process, $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$, $K_p = 1.45 \times 10^{-5}$ at 500°C. In an equilibrium mixture of the three gases at 500°C the partial pressure of H ₂ is 0.928 atm and that of N ₂ is 0.432 atm. What is the partial pressure of NH ₃ in this equilibrium mixture?	[4]	CO1			
4.	Why is tertiary alkyl halide more prone to SN ₁ reaction?	[4]	CO3			
5.	Compare nucleophilic substitution reactions and elimination in alkyl halides.	[4]	CO3			
	SECTION-B					
	(Question No. 6, 7 and 8 are Compulsory); attempt any one from 9A & 9B					
6.	Describe carnot cycle with suitable diagram. Derive expression for efficiency of Carnot engine.	[10]	CO1			
7.	i) Discuss the characteristics of chemical equilibrium.					
	ii) Why do aldehydes and ketones undergo nucleophilic addition reactions? Why are ketones less reactive than aldehydes?	[4+6]	CO1 CO3			
8.	Complete the following reaction sequence: H O CH_3MgCl [A] PCC $B] \frac{NH_2-NH_2}{glycol, KOH}$ [C] D OH	[10]	CO4			

9A.	i) Explain Cannizzaro's reaction with example.				
	ii) Why does dissociation of NH4OH decrease on addition of NH4Cl?	[6+4]	CO3 CO2		
	OR				
9B.	i) Give three reagents, which can be used for oxidation of both primary and secondary				
	alcohol. Why tertiary alcohols cannot be oxidized easily?	[6+4]	CO3 CO2		
	ii) Why can we not consider hydrolysis of a salt of strong acid and strong base?				
	SECTION - C (Question No. 10 is Compulsory; Attempt any one from question numbers 11A & 1	1 B)			
10.	i) Derive an expression of hydrolysis constant for salt of weak acid and strong base.	[8+8+	CO2		
	Consider degree of hydrolysis to be "h".	4]	CO3 CO4		
	ii) Complete the reaction with mechanism				
	H ₃ C				
	$\begin{array}{c} & \underbrace{\text{CH}_{3}\text{OH} / \text{H}^{+}}_{\bullet} \text{[A]} \underbrace{\text{CH}_{3}\text{OH} / \text{H}^{+}}_{\bullet} \text{[B]} \end{array}$				
	H ₃ C				
	iii) With the help of suitable reaction explain Reimer Tiemann reaction. What is the electrophile in the reaction and how is it generated?				
11A.	. i) Calculate the entropy change at 373 K for transformation				
	$H_2O(l, 1.01325 \text{ bar}) = H_2O(g, 0.101325 \text{ bar})$				
	Given: $\Delta H_{vap} = 40.668 \text{kj/mole}$				
	ii) How does nitro group enhance the reactivity of chlorobenzene towards nucleophilic substitution reaction? Show with resonating structures.				
	iii)Calculate the solubility, in grams per litre, of Al(OH) ₃ in water at 25°C, if $K_s = 8.5 \times 10^{-32}$.				
	OR				
11B.	i) Estimate the value of ΔH combustion for methane. Given the bond energies in kj/mole,	[8+8+	C01		
	С-Н 413 О=О 498	4]	CO4 CO2		
	C=O 803 H-O 463				
	ii) If you are provided with a set of primary, secondary and tertiary alcohols, suggest a test which can be used to distinguish them. Explain with reasoning.				
	iii) A sample of hard water contains 0.005 mole of $CaCl_2$ per liter. What is the minimum concentration of Na ₂ SO ₄ , which must be added for removing Ca ⁺² ions from this water sample? ksp for CaSO ₄ is 2.4 X 10 ⁻⁵ .				

Enrolment No:

Course: CHEM-1008 (Chemistry) (End Semester Examination May 2019) Programme: B.Sc (H) Physics/Math Semester: II Course Name: Chemical Energetics, Equilibria & Functional Group Organic Chemistry I

Time: 03 hrs.

Instructions: Read all the below mentioned instructions carefully and follow them strictly:

- 1. Write your enrolment number on the top left of the question paper
- 2. Do not write any thing else on the question paper except your enrolment number
- 3. Attempt all part of a question at one place only
- 4. Internal choice is given for question number 9 and 11 only

	Section - A (Attempt all FIVE Questions)					
1.	Calculate the pH of a solution obtained by mixing 25 ml of 0.2 M HCl with 50 ml of 0.25 M NaOH.	[4]	CO2			
2.	Calculate pH of following: (i) 10 ⁻³ N HNO ₃ (ii) 10 ⁻³ M H ₂ SO ₄					
3.	$3A_{(g)} + B_{(g)} \leftrightarrow 2D_{(g)} + 60$ Kcal. Discuss the effect of temperature and concentration at equilibrium of given reaction.					
4.	What happens when acetone is reacted with HCN ? Write reaction with mechanism.	[4]	CO3			
5.	Explain Benzoin condensation with suitable reactions.					
	SECTION - B (Question No. 6, 7 and 8 are Compulsory); attempt any one from 9A & 9B					
6.	Calculate work done in the following cyclic process. (P_2,V_2,T_1) (P_2,V_2,T_1) A B	[10]	CO1			
7.	i) Derive an expression for relation between total pressure P and degree of dissociation α for association PCl ₅ (g) \leftrightarrow PCl ₃ (g) + Cl ₂ (g). ii) Complete the reaction with mechanism:	[4+6]	CO1 CO3			

	$(P_4, V_4, OH_3 CH_2 OH / CH_3 CH_2 OH / H^+ (A) \rightarrow (A) \rightarrow (B)$		
8.	An organic compound A (C ₄ H ₉ Cl) on reaction with alcoholic KOH gives single product	[10]	CO4
	B. B on chlorination gives C which on treatment with excess KOH in water gives D. D		
	in presence of protonic acid undergo rearrangement to give an aldehyde E. E reacts with		

🔰 UPES

Max. Marks:100

	phenyl hydrazine to give F. Identify the structures of compound A to F.		
9A.	i) Explain Oppeneauer oxidation with example.		
	ii) Calculate the percentage hydrolysis of sodium acetate in 0.1 M solution at 25° C assuming that the salt is completely dissociated. Ka of acetic acid at 25° C = 1.75 X 10^{-5} .	[6+4]	CO3 CO2
	OR		
9B.	i) Complete the reaction with mechanism:		
	$\begin{array}{c} \begin{array}{c} & CH_{3} \\ \hline \\ H_{2}SO_{4} \end{array} \end{array} [A] \end{array}$	[6+4]	CO3 CO2
	ii) 25 ml of 0.01 M AgNO ₃ solution is mixed with 25 ml of 0.0005 M aqueous NaCl solution. Determine if the precipitate of AgCl will be formed or not. Given Ksp(AgCl) = 1.7×10^{-10}		
	SECTION - C (Question No. 10 is Compulsory; Attempt any one from question numbers 11A &	11B)	
10.	i) Derive an expression of pH for salt of weak base and strong acid.	[8+8+4]	CO2
	ii) Complete the reaction with mechanism:		CO3 CO4
	H H ₂ N		
	$\begin{array}{c c} & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$		
	iii) Explain Wittig reaction with suitable reaction.		
	OR		
11A.	i) The molar heat of formation of NH ₄ NO ₃ (s) is -367.54 kj and those of N ₂ O(g) and H ₂ O(l) are +81.46 kJ and -285.78 kJ respectively at 25°C and at 1atm pressure. Calculate Δ H and Δ E for the reaction NH ₄ NO ₃ (s) \rightarrow N ₂ O(g) + 2H ₂ O(l).	[8+8+4]	CO1 CO4 CO2
	ii) Discuss benzyne mechanism with relevant example.		
	iii) Given that the solubility product of $BaSO_4$ is 1 X 10 ⁻¹⁰ . Will a precipitate be formed when equal volumes of 2 X 10 ⁻³ M $BaCl_2$ solution and 2 X 10 ⁻⁴ M Na_2SO_4 solution are mixed		
11B.	i) Derive the following relation, thermodynamically.	[8+8+4]	CO1 CO4
	$\Delta G^0 = -RTlnkp$		CO4 CO2
	ii) Complete the following reaction sequence:		

0	CH₃CH₂MgCl ► [A]		[B] Zn-Hg / HCI [C]	[D]	OH	
iii) Derive th ions for the fo	-	lubility prod	luct in terms of solub	ility of the	corresponding	
	C					
	AgCl					
(ii)	BaF_2					
(iii)	Cu_2S					