

	thereat and $\left(\frac{1}{f}\right)^{\prime}(c)=\frac{-f(c)}{\{f(c)\}^{2}}$		
SECTION C (All questions are compulsory, Question 11 has internal choices)			
$\begin{aligned} & \text { Q } 10 \\ & \text { (A) } \\ & \hline \end{aligned}$	Show that the normal to a given curve is a tangent to its evolute.	10	CO 3
Q 10 (B)	Sketch the graph of the curve $y=\frac{(x-1)(x-3)}{x^{2}}$	10	CO 4
$\begin{aligned} & \text { Q } 11 \\ & \text { (A) } \end{aligned}$	Show that the function $f(x, y)=\left\{\begin{array}{cc} \frac{x^{3}+2 y^{3}}{x^{2}+y^{2}}, & (x, y) \neq 0 \\ 0, & (x, y)=(0,0) \end{array}\right\}$ (i) is continuous at $(0,0)$ (ii) possesses partial derivatives $f_{x}(0,0)$ and $f_{y}(0,0)$ (iii) is not differentiable at $(0,0)$	10	CO 2
$\begin{aligned} & \text { Q } 11 \\ & \text { (B) } \end{aligned}$	Find the $n^{\text {th }}$ derivative of y where $y=e^{a x} . \operatorname{Cos}(b x+c)$	10	CO 2
	OR		
$\begin{aligned} & \text { Q } 11 \\ & \text { (A) } \end{aligned}$	Determine $y_{n}(0)$ where $\quad y=e^{m \cos ^{-1} x}$	10	CO 2
Q 11 (B)	If $z=\mathrm{f}(x, y), x=r \cos \theta, y=r \sin \theta$ then show that $\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}=\left(\frac{\partial f}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial f}{\partial \theta}\right)^{2}$	10	CO2

	OR		
Q 9	Define uniform continuity and show that $f(x)=1 / x$ is not uniformly continuous on $(0,1]$	10	CO 1
SECTION C(All questions are compulsory, Question 11 has internal choices)			
$\begin{aligned} & \text { Q } 10 \\ & \text { (A) } \end{aligned}$	Find the evolute of the curve $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$	10	CO 3
Q 10 (B)	Sketch the graph of the curve	10	CO 4
$\begin{aligned} & \text { Q } 11 \\ & \text { (A) } \end{aligned}$	If f is a homogeneous function of x and y of degree n then show that $x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=n f$	10	CO 2
$\begin{aligned} & \text { Q } 11 \\ & \text { (B) } \\ & \hline \end{aligned}$	Find the $n^{\text {th }}$ derivative of y where $y=e^{a x} . \operatorname{Sin}(b x+c)$	10	CO 2
	OR		
$\begin{aligned} & \text { Q } 11 \\ & \text { (A) } \end{aligned}$	State and Prove Leibnitz's theorem of successive differentiation.	10	CO 2
$\begin{aligned} & \text { Q } 11 \\ & \text { (B) } \end{aligned}$	Find the total differentiation coefficient of $x^{2} y$ with respect to x when x, y are connected by $x^{2}+x y+y^{2}=1$.	10	CO 2

