Name:			
Enrolm	Inrolment No:		
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIE End Semester Examination, May 2019	S	
Programme Name:B. Sc. (H.) (Physics/Chemistry)Semester:IICourse Name:CalculusTime:: 03 hCourse Code:MATH 1033Max. Marks:100Nos. of page(s):22100			
11050 01	SECTION A (All questions are compulsory)		
S. No.		Ma rks	CO
Q 1	What value should be assigned to $f(x) = \frac{1-x}{1-x^{1/3}}, x \neq 1$ at $x=1$, so that it is continuous at $x=1$	4	CO 1
Q 2	Investigate the continuity at (0, 0) of $f(x, y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0,) \end{cases}$	4	CO 2
Q 3	Find the equation of the envelope of the family of curves $x \cos \alpha + y \sin \alpha = p$ where p is a constant and α is a parameter.	4	CO 3
Q 4	Find the points of inflection of the curve $y=3x^4+4x^3+6x^2+12x+12$	4	CO 4
Q 5	Using the mean value theorem show that $ \cos b - \cos a \le b - a $	4	CO 5
	SECTION B (All questions are compulsory, Question 9 has internal choices)		
Q 6	Show that for all $x > 0$, $1-x < e^{-x} < 1 - x + x^2/2$	10	CO 5
Q 7	Find the asymptotes of the curve $(2x + 3) y = (x-1)^2$	10	CO 3
Q 8	Trace the curve $x^3+y^3=3axy$, where <i>a</i> is a constant.	10	CO 4
Q 9	Show that $\lim_{x \to 1} 2^{\frac{1}{(x-1)}}$ does not exist.	10	CO 1
	OR		
Q 9	.Prove that, if f is derivable at c and $f(c) \neq 0$ then the function $1/f$ is also derivable	10	CO 1

	thereat and $\left(\frac{1}{f}\right)'(c) = \frac{-f(c)}{[f(c)]^2}$							
	SECTION C (All questions are compulsory, Question 11 has internal choices)							
Q 10 (A)	Show that the normal to a given curve is a tangent to its evolute.	10	CO 3					
Q 10 (B)	Sketch the graph of the curve $y = \frac{(x-1)(x-3)}{x^2}$	10	CO 4					
Q 11 (A)	$f(x,y) = \begin{cases} \frac{x^3 + 2y^3}{x^2 + y^2}, & (x,y) \neq 0\\ 0, & (x,y) = (0,0) \end{cases}$ Show that the function (i) is continuous at (0, 0) (ii) possesses partial derivatives $f_x(0, 0)$ and $f_y(0, 0)$ (iii) is not differentiable at (0, 0)	10	CO 2					
Q 11 (B)	Find the n^{th} derivative of y where $y = e^{ax}$. Cos $(bx+c)$	10	CO 2					
	OR							
Q 11 (A)	Determine $y_n(0)$ where $y = e^{m \cos^{-1} x}$	10	CO 2					
Q 11 (B)	If $z = f(x, y)$, $x = r \cos\theta$, $y = r \sin\theta$ then show that $\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 = \left(\frac{\partial f}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial f}{\partial \theta}\right)^2$	10	CO 2					

Name:							
Enrolme	Enrolment No:						
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019							
Programme Name:B. Sc. (H.) (Physics/Chemistry)Semester:IICourse Name: CalculusTime: 03 HCourse Code: MATH 1033Max. Marks:100Nos. of page(s): 2: 2Image: Semester							
SECTION A (All questions are compulsory)							
S. No.			Ma rks	СО			
Q 1	$\lim_{x \to \infty} x \tan \frac{1}{x}$		4	CO 1			
Q 2	Investigate the continuity at (0, 0) of $f(x, y) = \begin{cases} \frac{\sin^{-1}(x+2y)}{\tan^{-1}(2x+4y)}, & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \end{cases}$	0)),))	4	CO 2			
Q 3		family of straight lines $y = cx + c^2$, where c is a	4	CO 3			
Q 4	Find the points of inflection of the curve	$y = e^{-x^2}$ $ \cos b - \cos a \le b - a $	4	CO 4			
Q 5	Using the mean value theorem show that	$ \cos b - \cos a \le b - a $	4	CO 5			
SECTION B (All questions are compulsory, Question 9 has internal choices)							
Q 6	Find the maximum/minimum values of th Also find the greatest and smallest values	e function $f(x) = \sin x (1 + \cos x), 0 \le x \le 2\pi$.	10	CO 5			
Q 7	Find the asymptotes of the curve $(2x + 3)$		10	CO 3			
Q 8	$y = \frac{x^2}{\sqrt{x^2 - 4}}$ Trace the curve		10	CO 4			
Q 9	Show that $\lim_{x \to 1} 2^{\frac{1}{(x-1)}}$ does not exist.		10	CO 1			

	OR					
Q 9	Define uniform continuity and show that $f(x) = 1/x$ is not uniformly continuous on $(0, 1]$	10	CO 1			
	SECTION C (All questions are compulsory, Question 11 has internal choices)					
Q 10 (A)	Find the evolute of the curve $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Sketch the graph of the curve $y = x + \frac{1}{x}$.	10	CO 3			
Q 10 (B)	Sketch the graph of the curve $y=x+\frac{1}{x}$.		CO 4			
Q 11 (A)	If f is a homogeneous function of x and y of degree n then show that $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = nf$		CO 2			
Q 11 (B)	Find the n^{th} derivative of y where $y = e^{ax}$. Sin $(bx+c)$		CO 2			
	OR					
Q 11 (A)	State and Prove Leibnitz's theorem of successive differentiation.		CO 2			
Q 11 (B)	Find the total differentiation coefficient of x^2y with respect to x when x, y are connected by $x^2 + xy + y^2 = 1$.	10	CO 2			