Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Course: Hyperspectral Remote Sensing Program: B. Tech. GIE

Course Code: PEGI – 3004

Semester: VI Time 03 hrs.

Max. Marks: 100

Instruc			
A nextro	SECTION A		
S. No.	r all Questions	Marks	CO
Q 1	List major characteristics of "EO-1 Hyperion" hyperspectral satellite sensor	4	CO1
$\frac{\sqrt{1}}{Q2}$	Write brief note with illustration on vegetation red edge reflectance parameters		
		4	CO2
Q3	Advantages of Maximum Noise Fraction (MNF) and Independent Component Analysis (ICA) methods over Principal Components Analysis (PCA)	4	CO3
Q4	Draw the schematic diagram showing principle of whiskbroom scanning use in hyperspectral remote sensing data acquisition	4	CO2
Q5	List two red edge vegetation structural parameters and two chlorophyll content assessing hyperspectral vegetation indices.	2 + 2	CO3
	SECTION B		
Q6	Write short notes with diagram and empirical relationships the concepts of SVM and ANN methods of digital classification of hyperspectral RS data.	10	CO3
Q7	Explain with illustration and empirical relationship – BRDF in reflectance spectroscopy. Write short note on atmospheric correction of hyperspectral remote sensing data using radiative transfer model "ATREM".	5 + 5	CO1
Q8	Discuss identification of various types of mineral assemblages from ASTER Ratio Indices.	10	CO4
Q9	Write notes on various analysis approaches adopted for the use of hyperspectral RS data in assessment of environmental hazards and disasters OR	10	CO4
	Discuss the various methods used for estimation of soil organic carbon and soil organic matter content using hyperspectral RS data	10	CO4
	SECTION-C		
Q10	Discuss in details various methods used for extracting the red edge vegetation spectral parameters from hyperspectral RS data	20	CO3
Q11	Write in details analysis approaches of hyperspectral remote sensing data for estimation of various types of vegetation biochemical parameters. OR	20	CO4
	Give an detail accounts of concept of spectral unmixing analysis of hyperspectral RS data; various types of mixing of materials in nature; and MESMA and MTMF spectral unmixing analysis techniques	5 + 5 +10	CO4

Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Course: Hyperspectral Remote Sensing

Program: B. Tech. GIE

Course Code: PEGI - 3004

Semester: VI Time 03 hrs.

Max. Marks: 100

Instructions:

Q7

	SECTION		
Answer	all Questions		
S. No.		Marks	CO
Q 1	Write full forms of the hyperspectral aerial/satellite sensors - CASI; MERIS;	4	CO1
	HYDICE & CASI	7	COI
Ω	Write the ampirical formula of hymerometral indices. NDCI: Clay mineral ratio		

SECTION A

Q2	write the empirical formula of hyperspectral indices – NDSI; Clay mineral ratio;	4	CO3
	Ferrous mineral ratio and Iron oxide ratio	7	003
Q3	With schematic diagram explain the approaches of spectral ratio indices computation	4	CO3
Q4	Draw the schematic diagram showing principle of push broom scanning technique	4	CO2
	use in hyperspectral remote sensing data acquisition.	-	002
Q5	List two vegetation anthocyanin pigment content and two lignin & cellulose content assessing hyperspectral vegetation indices.	2 +2	CO3

	was taking hij parapatitur (a gamaran marata).			
	SECTION B			
Q6	Write short notes with diagram and empirical relationships the concept of PCA and Wavelet decomposition methods of feature selection using hyperspectral RS data.	5+5	СОЗ	

Explain in detail with illustrations and empirical relationships the radiation

	interaction principles of reflectance spectroscopy in two mediums (atmosphere and geosphere); three mediums (atmosphere, geosphere and hydrosphere)	10	CO1
Q8	Write note on spectral characteristics of soils and methods of soil salinity assessment using hyperspectral RS data	5 + 5	CO4
Q9	Discuss analysis approaches used in assessment of environmental hazards and disasters using hyperspectral R.S.	10	CO4

	disasters using hyperspectral R.S.	10	CO4
	OR		
	Discuss use of hyperspectral remote sensing data in snow and glacier studies.	10	CO4
	SECTION-C		
0.1.0			

SECTION-C				
	Q10	Discuss in details – various types of mixing of materials in nature; concept of spectral unmixing analysis of hyperspectral remote sensing data, and MESMA and MTMF spectral unmixing analysis techniques.	5+5+ 10	CO3
	Q11	Give an detail account of various methods used for extracting the red edge vegetation spectral parameters from hyperspectral RS data OR	20	CO4
		Write in detail approaches of use of spectral absorption features techniques for mineral mapping utilizing hyperspectral remote sensing data.	20	CO4