Name: Enrolment No:			
Course Progra Course Instru	\left.UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019 $\right]$ Semester: 4 ions: Please submit the APPENDIX- 1 along with the answer script.		
SECTION A			
S. No.		Marks	CO
Q 1	What is flow separation?	5	CO1
Q 2	What is closed circuit crushing?	5	CO2
Q 3	(a) Define mesh and pitch of screens. (b) What does TSS stands for, w.r.t. to particle characterization?	$\begin{aligned} & 4 \\ & 1 \end{aligned}$	CO 3
Q 4	What is shear-mixing mechanism?	5	CO4
Q 5	Give two examples of fluid flow through beds of solids.	5	CO5
SECTION B			
Q 6	Differentiate between free settling and hindered settling of particles in a fluid.	8	CO1
Q 7	Derive the critical rotation speed (N_{c}) for a ball mill and calculate the critical speed in revolution/minute, of a ball mill with an internal diameter of 1200 mm loaded with balls of 70 mm diameter. OR Describe the working of any (one) comminution equipment for crushing a feed of intermediate size materials, along with a proper-labelled diagram.	8 8	CO 2
Q 8	The screen analysis representing size distribution of particles is shown in Fig. 1. Using Gates-Gaudin-Schumann method, compute the particle size distribution of the particles (for three sizes) present in the pan.	8	CO3
Q 9	What is agglomeration? What are the different stages of agglomeration of particulate matter? OR Describe in brief the dense phase pneumatic conveying system with a proper-labelled diagram.	8 8	CO4
Q 10	What are nanoparticles? Give three applications of nanoparticle w.r.t. its properties.	8	CO5
SECTION C			

Q11	(i) Derive the expression of terminal settling velocity $\left(V_{\mathrm{t}}\right)$ of a particle falling in a fluid with very low Reynolds number. (ii) How does the size of a container (or vessel) affect the terminal settling velocity (V_{t}) of a particle? Give the expression for terminal settling velocity when the ratio of the size of particle to that of the size of container is significant. OR	$\mathbf{1 0}$	$\mathbf{1 0}$
A cyclone separator is used to remove sand grains from an airstream at $150^{\circ} \mathrm{C}$. If the cyclone body is 0.6 m in diameter and the average tangential velocity is $16 \mathrm{~m} / \mathrm{s}$, what is the radial near the walls for a particle of $20 \mu \mathrm{~m}$ in size? How much are these values greater than the terminal velocity in gravity settling? Given data: You can make use of Fig. $\mathbf{2}$ and $\mathbf{3}$. While, specific gravity of particles $=2.2$.	$\mathbf{2 0}$	$\mathbf{C O 1}$	
Q 12	Derive Ergun equation for flow of liquid through packed bed. Mention all the assumptions wherever necessary.	$\mathbf{2 0}$	$\mathbf{C O 5}$

APPENDIX- 1

This sheet (containing Fig. $1-3$) needs to be submitted along with the answer script.	
Roll number:	SAP ID:

Fig 1:
Particle
size
distributio
n results of
a screen analysis.

Fig 2: Plot
for drag coefficient vs
Reynolds number of single particle.

Fig. 3: Viscosity of gases.

Name:	UPES
Enrolment No:	
UNIVERSITY WITH A PURPOSE	

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Course: Particulate Technology
Program: B. Tech (Chemical Engineering)
Course Code: CHCE 2007

Semester: 4
Time 03 hrs.
Max. Marks: 100

Instructions: Please submit the APPENDIX-1 along with the answer script.

SECTION A

S. No.		Marks	CO
Q 1	What is terminal settling velocity? Give its mathematical expression.	5	CO1
Q 2	State Bond's law for size reduction of particulate matter? Give its mathematical expression.	5	CO2
Q 3	(a) Define aperture and pitch of a screen. (b) What does BSS stands for, w.r.t. to particle characterization?	4	CO3
Q 4	Explain convective mixing of solids.	5	CO4
Q 5	Illustrate any two examples of fluid flow through beds of solids.	5	CO5

SECTION B

Q 6	Differentiate between free settling and hindered settling.	8	CO1
Q 7	Describe in brief the working of a jaw crusher along with a proper-labelled diagram. OR Differentiate between a cone crusher and gyratory crusher.	8 8	CO 2
Q 8	The screen analysis of a sample of 100 g of crushed quartz is shown in Table 1. The density of the particles is $2,650 \mathrm{~kg} / \mathrm{m}^{3}$ and the shape factors are $\boldsymbol{a}=2$ and sphericity, $\phi_{s}=0.571$. For material between 5 -mesh and 10 -mesh in particle size, calculate the fraction of particles retained on $6 / 8$ mesh.	8	$\mathrm{CO3}$
Q 9	Explain the various stages of agglomeration of a particulate matter. OR Describe in brief the dilute phase pneumatic conveying system with a proper-labelled diagram.	8 8	CO4
Q 10	Describe any four applications of a nanoparticle (or nanomaterials) in various field of science and technology.	8	$\mathrm{CO5}$
SECTION-C			
Q 11	(i) A particle of $50 \mu \mathrm{~m}$ in size is falling in a stationary fluid under the effect of gravity. Derive the expression of terminal settling velocity $\left(V_{t}\right)$ of the particle. Also, include all necessary assumptions wherever needed.	10	CO1

	(ii) Describe the influence of the size of container (or vessel) on the terminal settling velocity $\left(V_{t}\right)$ of a particle. Also, mention the expression for terminal settling velocity when the ratio of size of particle to that of container is significant.	$\mathbf{1 0}$	
Q12	A partial oxidation is carried out by passing air with 1.2 mole percent of propane through 40 mm tubes packed with 2 m of 3 mm by 3 mm cylindrical pellets. The air enters at $350^{\circ} \mathrm{C}$ and 2.0 atm with a superficial velocity of $1 \mathrm{~m} / \mathrm{s}$. What is the pressure drop through the packed tubes? Given data: Void fraction $=0.4$, and viscosity of air at $350^{\circ} \mathrm{C}=3.5 \times 10^{-5} \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$.	$\mathbf{2 0}$	$\mathbf{C O 5}$
Derive the expression of pressure drop for flow of fluids through packed beds of solids with the help of a proper-labelled diagram. Mention all the assumptions wherever necessary.	OR		

APPENDIX- 1

This page needs to be submitted along with the answer script.
Roll number: \quad SAP ID:

Table 1: Results of screen analysis of a mixture of particles of various sizes.

Mesh No.	Mesh opening, mm	Mass retained, grams					
4	4.75	-					
5	3.35	15					
6	2.80	45					
8	2	20					
10	1.80	10					
Pan	-	10					

