Name: Enrolment No:			
S. No.		Marks	CO
Q1	If $\left\|\begin{array}{ll}x & x \\ 1 & x\end{array}\right\|=\left\|\begin{array}{ll}3 & 4 \\ 1 & 2\end{array}\right\|$, find the values of x.	02	CO1
Q2	Find $\frac{d^{3} y}{d x^{3}}$, where $y=x^{2} e^{x}$. Evaluate the integral $\int 4 x \sin (x) d x$.	04	CO1
Q3	If $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$ show that $A^{T} A$ and $A A^{T}$ are symmetric matrices. OR If $P=\left[\begin{array}{ll}9 & 1 \\ 4 & 3\end{array}\right]$ and $Q=\left[\begin{array}{cc}1 & 5 \\ 7 & 12\end{array}\right]$, find the matrix R such that $7 P+8 Q+2 R$ is a null matrix.	04	CO1
SECTION B			
Q 4	If 4 times the $4^{\text {th }}$ term of an A.P. is equal to 9 times the $9^{\text {th }}$ term of the A.P., what is 13 times the $13^{\text {th }}$ term of this A.P.?	10	CO2
Q 5	In how many of the distinct permutations of the letters in QUANTITATIVE do the four T's not come together?	10	CO 2
SECTION-C			
Q 6	A. Find $\frac{d y}{d x}$ at $x=2$, where $y=\frac{1+\sqrt{x}}{1-\sqrt{x}}$. B. Evaluate the integral $\int x \sqrt{x^{2}+3} d x$ (use substitution $x^{2}+3=t^{2}$).	$\begin{gathered} (5 \times 2)= \\ 10 \end{gathered}$	CO1

| Q 7 | Find the extremum for the function $y=x^{3}+10 x^{2}+25 x-40$. | $\mathbf{1 0}$ | CO3 |
| :--- | :--- | :--- | :--- | :--- |

Name: Enrolment No:			
Programme: BBA, LL.B. (Hons.) Corporate Laws 2018, BBA, LL.B. (Hons.) Banking, Insurance and Finance / International Trade and Investment Law 2018, B.COM., LLB. (Hons.) Taxation Laws / Media \& Entertainment Laws 2018 Time: 03 hrs . Max. Marks: 100 Instructions: Scientific calculators are allowed for the examination			
SECTION A			
S. No.		Marks	CO
Q 1	For what values of x, the matrix $\left[\begin{array}{cc}5-x & x+1 \\ 2 & 4\end{array}\right]$ is singular?	02	CO1
Q 2	Find $\frac{d^{3} y}{d x^{3}}$, where $y=x^{9} e^{x}$. OR Evaluate the integral $\int 6 x \cos (x) d x$.	04	CO1
Q 3	If $B=\left[\begin{array}{lll}3 & 2 & 5 \\ 4 & 1 & 3 \\ 0 & 6 & 7\end{array}\right]$, show that $B+B^{T}$ and $B-B^{T}$ are symmetric and skew symmetric matrix, respectively. OR If $P=\left[\begin{array}{ll}9 & 1 \\ 4 & 3\end{array}\right]$ and $Q=\left[\begin{array}{cc}1 & 5 \\ 7 & 12\end{array}\right]$, find the matrix R such that $5 P+3 Q+R$ is a null matrix.	04	CO1
SECTION B			
Q 4	A box contains three white balls, four black balls and three red balls. Find the number of ways in which three balls can be drawn from the box so that at least one of the balls is black.	10	CO 2
Q 5	Sum of first 12 terms of a GP is equal to the sum of the first 14 terms in the same GP. Sum of the first 17 terms is 92 , what is the third term in the GP?	10	CO 2
SECTION-C			

Q 6	A. Find $\frac{d y}{d x}$ at $x=1$, where $y=\frac{3-x^{\frac{1}{2}}}{2+x^{\frac{3}{2}}}$. B. Evaluate the integral $\int 4 x \sqrt{x^{2}+3} d x$ (use substitution $x^{2}+3=t^{2}$).	$\begin{gathered} (5 \times 2)= \\ 10 \end{gathered}$	CO1
Q 7	Determine the conditions under which the function $y=a x^{2}+b x+c$ will have (i) a maxima (ii) a minima. (where a and b are constants)	10	CO 3
SECTION-D			
Q 8	A. Using ERT method find the inverse of $\left[\begin{array}{ccc}2 & -1 & 4 \\ 4 & 0 & 2 \\ 3 & -2 & 7\end{array}\right]$. B. Sum of first 25 terms in AP is 525 , sum of next terms is 725 , what is the common difference?	$\begin{gathered} (10 \times 2) \\ =20 \end{gathered}$	CO1
Q 9	The prices, in rupees per unit, of the three commodities X, Y and Z are x, y and z, respectively. A purchases 4 units of Z and sells 3 units of X and 5 units of Y. B purchases 3 units of Y and sells 2 units of X and 1 unit of Z. C purchases 1 unit of X and sells 4 units of Y and 6 units of Z. In the process, A, B and C earn Rs. 6000, 5000 and 13000 , respectively. Using matrices, find the prices of the three commodities. (note that selling the unit is positive earning and buying the units is negative earning).	20	CO4
Q 10	The demand function of a commodity is given by $p=\frac{150}{x^{2}+2}-4$, where p is price per unit and x denotes quantity. Determine the marginal revenue function.	10	CO4

