

Q 5	Assume that the rate of net investment is given as $I=20 t^{2 / 3}$, and capital stock (K) at $t=0$ is 65 . Find the capital stock function K.	10	3
SECTION-C (3*10 = 30 marks)			
Q 1	Assume that the marginal cost (MC) is given as $M C=32+18 Q-12 Q^{2}$, and fixed cost $(F C)$ is 43 . Find total cost $(T C)$, average cost $(A C)$ and variable cost $(V C)$ functions.	10	4
Q 2	Let the total cost of production of x units of commodity is given as $C(x)=x^{3}-90 x^{2}+7500 x, x \geq 0$. (a) Compute the marginal cost function $C^{\prime}(x)$. (b) Find the value of x at which marginal cost is minimum.	10	4
Q 3	Let the total revenue function be $R=4000 Q-33 Q^{2}$ and total cost function $C=2 Q^{3}-3 Q^{2}+400 Q+5000$ and assume $Q>0$. Find the level of output at which profit is maximum.	10	3
Q 4	Let A is a 3×3 matrix given as $\mathrm{A}=\left[\begin{array}{lll}2 & 5 & 1 \\ 3 & 2 & 4 \\ 1 & 4 & 6\end{array}\right]$. Compute the inverse of matrix A .	10	1
SECTION-D (2*15 = 30 marks)			
Q 1	Use Lagrange multiplier to optimize the following function: $z=4 x^{2}-2 x y+6 y^{2}$ subject to $x+y=72$	15	3
Q 2	Use Cramer's rule to solve for the unknowns in the following system of equations. $\begin{aligned} & 2 x+4 y-3 z=12 \\ & 3 x-5 y+2 z=13 \\ & -x+3 y+2 z=17 \end{aligned}$	15	2

